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1 Exercise Sheet 1

1.1 Exercise 1 - Examples of Fourier transforms

a Consider the function f € L' (T) defined as the periodization of
fx)=22r—2x). (1)

Calculate the Fourier coefficients of f and use them to prove that
ST 2)
2 - —.
=k 6

b Let o be a positive real number and v, u € R?. Consider the function Jov,u in the
space L? (Rd) with d € N defined as

d
1

Jo,v,u (x) := (%) e_%|x—V\2+iu-x‘ )

Then prove that gyvu = €V "gp-1 4y v, i.e.

d d
F [<0)4 €—g|x—v2+iu-x] (k) _ <1> 4 e—i|k—u|2—iu-(k—v)_ (4)

s g

Proof. For the proof of a, first consider the coefficients of f; if k € Z\ {0} those are given
as

~ 1 2m .
f(k) = e L z(2m —x) e Fdy
; ot £/2i J%
0 B \/Ek 0
- ke o \/5 21
= _(7T—.’L')6 k ]0 + T2 ),
V2 [ —omki (6727@ _ 1)] V8m

S, (21 — ) e_ikx]

(m — x) e "y

efzkxdx

7
= —Te -7+ -

VTk? | k




On the other hand when k£ = 0 we have

- 1 [ 1 1 41°7  Bra?
0) = — (27 —x)dr = — 7rx2—x3] =
70 V2T J;) ( ) 2w { 3 0 3
We then use the fact that f(0) = 0 to get
~ 8mm? P
0=F(0)=), f(k)= —2VEm )y 5
3 k
keZ k=0
+00 2
1 T
Z 26
k=0

which concludes the proof of (2).

For the proof of b, recall that for any positive real number o > 0 we have
d
[ )
R4 [0 '

Consider now the function

Bl

ho (%) 1= oo () = (2) 73

™

In general we have that
Ox;ho (x) = —0xjhe (X) .

Consider then the derivative on the j-th component of ?Lg. Now, given that h, is an
exponentially decaing continuous function, we can apply Leibniz theorem and integration

by part to get

~ 1 A
O ho (K) = —— fRd ho (X) 0, (e—’k"‘) dx

This is a well defined differential equation, with initial datum

o (0) = (271)3 fRd he (x) dx = <017r>

e




If we now suppose that he (k) = fi(k1)-...- fa(kq), we get that for any j

50 = 15, 0),

and therefore, integrating ¢ between 0 and k; we get

0 gtdt: o fi(t)

p s kj ! g
k: _ _J 1 ;i ®) dt = [log (f; (t))]gj = log (?f(%ﬁ) )

Recall now that for any vector r € R< the operators Ty and M, are defined as

Tf(x)i=f(x=1),  Mf(x)i=e™f(x), vfeL'(R).

Then, we saw before that

FT, = M,F,  FM,=T_F.

We now get to calculate the transform of g, v . First notice that govu = M_u1v 9500 =
M_uTyhs. Notice now that for any f e L? (Rd) we get

(TuMy f) (%) = (Myf) (x —u) = VW (x —u) = V™ (M Tuf) (%)

We then have
.’g\a,v7u =FM_Ivh, = Tquha—l = eiV.quTuho—l = eiv.ugo—l,u,—vv

which concludes the proof.

1.2 Exercise 2 - Properties of operator norm and definition of boundedness
(complement to the exercise session)

Consider Vi and V; two normed vector spaces over! F and T : V; — V5 a linear mapping.
Define [Ty, v, as

Tv
)= s L
vei, v20 |V

(5)

'Here and in the following F can be chosen to be either R or C.



For a generic linear mapping T' we have |T'|| € [0, +00]. Prove that

|7 = sup  |T] (6)
veVr, H'UHV1 =1
= sup |Tv|. (7)

veVa, Jloly, <1

Prove moreover that the following are equivalent

a 1 is continuous.

b T is continuous in 0, meaning that for any sequence {v,}, .y < Vi,

v, =0 =— Tz, —0. (8)
¢ The quantity |T'|| is finite, meaning that |T'| < +co.

Proof. To prove (6) we get

T
= s Ll ()]
veVy, v#0 HUH veVy, v#0 HUH
= sup |Tv|.
veVy, |lv|=1

To prove (7) first notice that given that the unit sphere is a subset of the corresponding
unit ball we have
sup  |Tv| < sup  |Tv].

veVi, [uf=1 veVi, [uf<1

On the other hand, suppose that v € V; with |v]| < 1, then

sup  |Tv| < sup [T || = [T,

veVy, |v[<1 veVy, |v[<1
which concludes the proof of the first part of the exercise.
Next notice that a implies b trivially.

To prove that b implies ¢, we have that if T is continuous, the preimage of any open
set is open. In particular, consider? T—1 (B (0)). Given that 0 € T~ (B (0)) and T is
continuous, there exists a positive real number R such that Bg(0) < T~ (B (0)), or
equivalently, by linearity of T, that T (Bj (0)) € Bg-1 (0). This can be also written as

1
<1l=|Tv| £ =
[l 1Tl <
and implies in particular that
1
T~ swp ol < 3,
veVr, |v|<1

2Recall that B, (v) denote the ball of radius r around v.



which implies c.

To prove that ¢ implies a, consider a sequence {v,}, .y S V1 such that v, — v in V;. Then

we have
| Tv, — To| =T (v, — v)|| < [T[ lvn — v] — 0,

completing the proof of the exercise.

1.3 Exercise 3 - Young Inequality

Consider p, ¢, r € [1,+00] such that

Let fe L4 (Rd), gelL" (Rd); prove that

I+ g, < £l gl -

Hint: Consider the functions o, B3, v defined as

a(xy)=f@|gx-y)",
By) =If I,
v (x,y) =g(x-y),
notice that

P— P

£ra 0] < [ aty)? 500 7 ) 7 dy

and that )
— —-r
,+u+L:1
p bq br

to apply Holder inequality.

(14)

(15)

Proof. Consider «, 8 and v as in the Hint. From basic algebraic properties of the Holder

conjugate exponents we get that

a(x,y)By)vxy) =1f(y)gx—y)l.

Given that ) L1 1
— —r
R A
p pq pr qQ T P
applying the previous equality to (10) and using Hoélder inequality we get
1 p—q p—r
|f+g(x)| < Rda(X,Y)P By)r v(xy)» dy
1 - —r
<la@x)p| |85, [y

p—q b—r
p p

1
= e )T 1 Fla™ gl



Now expanding the norm of o we get that

ol = [, 1£ )1"1g 6=yl dxay

= [£1g lgll -

So now we get

sty = [ [ | s 9ty d"]pd”]; <l ol | [l .>|1dyF

p—r

p—gq r q
= £la" lgl-" Ngl7 1517 = 1 £l gl

which concludes our proof.

1.4 Exercise 4 - Fourier transform and sinc

a Prove that there exists a positive real number C' such that we have

b .
sinx
f dx
0 T

sup < C.

0<a<b<+w

Hint: Consider the function

(17)

Deduce a bound on F'(t) uniform in n. Apply the fundamental theorem of calculus

for F(0) to conclude.

b Consider an odd function f € L' (R). Prove that for any such function we have

C
(27)

<

sup
0<a<b<+w0

" f (k)
| 5P < =151,

(18)

¢ Let g (k) be a continuous odd function on the line such that is equal to 1/logk for
any k > 2. Prove that there cannot be an L' (R) function whose Fourier transform

is g.

Proof. We first prove a; given that the function sinc is even, it is enough to bound the

following quantity:

)

N o
ST
dx
0 X

Consider now the function F' (t) defined as

with n a positive real number.




Then F'(t) is well defined and continuous for any real number ¢ and we have that F'(0)
is our initial quantity and F' (t) — 0 as t — +00. Moreover the derivative of F gives

n 7 .
F'(t) = f e sinx dr = —Im (f e(t“)zdx)
0 0
1

= —— (1 —te™sinn —e "cosn) .
1+ 2

Using now the fundamental theorem of calculus we get

0
F0)=F(T)+ JT F'(t)dt

for any positive T" and hence, taking the limit 7' — 400
F(0)= lim F(0
©) = lim_F (0

= lim [F(T)— JTF’ (t)dt]

T—+0 0

= — Jm F' (t)dt

0

+00 1
= J 52 (te_”t sinn + e M cosn — 1) dt.
0

For any positive real number n we get that

sin sin
sup|te_’7t sinn| = i sup te t = S <ot
t>0 n 1¢>0 ne
sup ‘e_"t cosn — 1’ = sup (1 — e 'cos 17) =1
t>0 t>0

and therefore we can bound |F (0)| as

7 ; +00
f et g0l — 1P (0)] < Hef L
0 X (& 0 1+t2

m(l+e)
2

Next, to prove b consider f an odd function. Then we have

f@)=—f(-2) = [f(@)=5((2)-f(-2).

This implies that if we consider the Fourier transform of f we get
~ 1

Fky=— j [ (&) — f (~2)] e da
2(2m)2 JR

1 —ikx 1kx
" 2(2m)? JRf(x) [6 v ]dx

i

S fR f (z) sin (kz) dz

(2m)2
I i (z) sin (kx) dx.
(2m)2 Jo



We substitute this in (18) to get

YRk L2 |t sin (k)
L Tdk = (27T)% LL f(x) . dacdk‘
+00 b in
<(22)g [ [ ke
2 (t® 0l sin k
_(%)gfo |f(a:)]La - ‘dkdaz

22 (T E
<= [ @l =—41l,
(2m)z Jo (2m)2

where in the last inequality we used (16). This concludes the proof of b.

To prove ¢ now, suppose g = h. Then on one hand from (18) for any positive real number

R > 2 we would have

—_
—
—

< IA] -

d
2

JRQ(k)dk‘ =

i (k)
5 J dk

5 k

2

On the other hand, we get that

R R log R
f g(k)dk‘ =J 1 dk;zf Liz —1og 082
9 k 9 klogk log2 ? log 2

where in the second equality we used the change of variables z = log k. Now the last term
goes to infinity as R goes to infinity, but this is absurd given that we proved above that
it should be bounded uniformly in R. Therefore such an h does not exists and the proof

is complete.
O

10



2 Exercise Sheet 2

2.1 Exercise 1 - Fourier transform and convolution

Let f, g . (]Rd). Recall that in class we proved

— d ~
2

f#g=(2m)2 fg. (19)

Prove that

~

Feg=(m? fg. (20)

Hint: Consider the equivalent statement of (19) for the inverse of the Fourier transform
and apply it to fg.

Proof. Recall that the inverse Fourier transform is such that f(x) = f(—x). We then use
(19) to get

—_—

feg(x)=frg(—x)=(27)

e,

F(=%)3(—x) = (27)

To prove (20), consider f, g€ . (Rd). Then we know that

@)
I
Q

F=1

Given that fge . (Rd), using the formula we deduced for the inverse Fourier transform,
we can get

o~ —
e

fo=15=(n) ¢ Feg= @i g
O
2.2 Exercise 2 - Unique projector (complement to the class)
Let H be an Hilbert space and V' a closed linear subspace of H.
a In class we proved that for any f € H there exists an element g; € V' such that
If = g¢l = min|f —hf. (21)

Prove that g; is the unique element of V' that satisfies the minimum.

b In class we proved that g is such that f — gy € V+. Prove that there is no other
element h € V such that f —he VL.

11



Proof. Recall the parallelogram law; for any f, g € H we have

IS+ gl +1f = gl* =20 £17 + 2 gl

To prove a, consider ¢’ € such that

| o
|f =g = min|f — .

This implies in particular that |f — ¢'| = ||f — g¢|. By parallelogram law we deduce that
los =o' = 1(f =) =/ =9p)’
=2[f =g +21f —gs* = | (f =9) + (F —ap)|’

2
— 417 = gplP = |2 = (o )P = 41F = gl = 4] = (6 + 9

Given that V is a vector space, we get that % (¢" + gf) € V, and therefore
72 2 . 2
— <4|f- —4inf |f—=h|"=0
los =g'I" <4l f —gsI" =4 int |f = ]

and therefore g = g;.

To prove b suppose that ¢’ € V is such that f — ¢’ € V. Then by definition of V*, for
any h eV we get

<h,gf—g'>=<h,f—g/>—<h,f—gf>=0,

where the last equality comes from the fact that both f — gf and f — ¢’ are in VL. We
therefore have that g — g’ € V4. At the same time, g; — ¢’ € V, and this implies ¢’ = g;.

O]

2.3 Exercise 3 - Hilbert space basis with Hahn-Banach

Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any mazximal orthonormal system is a base, i.e.
s dense.

For the second part prove and use the following fact: if f is an element of H and S is a

basis for H, there exists a sequence of elements {e,}, .y S S such that f € spanyg {en},cn-

Proof. To prove the first part, call A the set of all orthonormal systems in #, i.e.

A= {SQH: <’lb,1//>: (5&#/ Vw,d/e S},

where dy, 4 is 1 if 1) = 9" and 0 otherwise.

12



Consider then the set A with the partial order given by the inclusion. To apply Zorn’s
Lemma consider B an inductive ordered subset of A. Consider moreover

Sp = U S.

SeB

We want to prove that this is an upper bound for B.

First we prove that S € A. Given that H is closed with respect to unions, Sz € H. Let
now 1, 19’ € Sp; then there exist two orthonormal systems S, S’ such that ¥ € S € B
and 1’ € S’ € B; given that B is ordered, either S € S’ or S’ < S. Suppose S < S’; then
,Y" € S and we get that (1,9") = 0y 4, and therefore Sz € A. Given that for any S € B
we have S € Sg, this is clearly an upper bound for B.

We can now apply Zorn’s Lemma to deduce the existence of a maximal element of A.
What is left to prove is that this maximal element is a basis. Call S the maximal element;
by definition this is an orthonormal system. We prove that it is dense. Suppose it is not;
then® V := spany {S} is a well defined closed vector space such that H\V # @ and V*
is nonempty. Let now ¢ € V= such that ¢| = 1 and let Sy := {¢} U S. Clearly Sy < H;
consider ¢, ' € Sy; if ¢ # ¢ # ¢/ from the fact that S is an orthonormal system
we already know that (1,9’) = dy 4. Suppose now 1 € S; given that ¢ € V4 we get
(i, ¢y = 0. Given that (¢, ¢ = |¢|*> = 1 we deduce that S, is an orthonormal system.
But now Sy, 2 S and Sy # S, which contradicts the maximality of S. Therefore S is a
basis for H.

To prove the second part, we first prove the fact in the hint. Indeed, f € H implies that
there exists a sequence {fy}, .y such that f,, — f and

N(n)
fn = Z Ajn€jn
j=1

c S. Given that the latter is a

for some N (n) € N, {ajn}; oy © K and {ejn};, oy <

countable sequence in S this proves the fact.

Now, we use this fact to prove our Exercise; suppose that H is separable; therefore, there
exists D a dense subset of 7 which is countable, i.e., D = {d,}, .. But for every n e N, d,,
is in the span of S,, a countable subset of S; we then get the following chain of inequalities:

H=D= {dn}neN = U Sn
neN

N

S =%,

and the inequalities are in fact equalities.

From this we get that | J,,.y Sn is dense in H and given that (J, .y Sn < 5, this is also an
orthonormal system, therefore is a basis. Moreover, it is union of countable sets, so it is
also countable, and this proves the first implication.

Suppose now that S is a countable basis for . Recall that Q is dense in R and that Q+:iQ
is dense in C. Call then F a countable dense subset of K We have that D := spang {S} is
countable and dense in H.

O]

3We indicate with spany{A} the set of finite linear combinations of elements in A with coefficients in

K.

13



2.4 Exercise 4 - Property of the adjoint (bounded operators)

Let A, B bounded operators on an Hilbert space H and «, 8 € C. Prove the following
equalities:

id* = id (22)
(A=A (23)
(AB)* = (24)

(aA + BB)* = aA* + BB*. (25)

Moreover, prove that A* is bounded and that |A*|| = ||A]|.

Proof. For the proof of (22) consider 1) € H. For any ¢ € H from the definition of the
adjoint we get

(g, id* ) = (id ¢, 9 = ($,¢) = (#,id" ¢ — ¢) = 0,
and by density we can imply that id* i) = 1.

For the proof of (23) we get that for any ¢, ¥ € H

(6, (A*)" ) = (A%, ) = (b, A*§) = (A, §) = (¢, At)).

Analogously as before we conclude by density that (4*)* = A.

For the proof of (24) we get that for any ¢, ¥ € H

(6, (AB)* ) = (AB¢, ) = (B, A1) = (¢, B*A™).

For the proof of (25) we get that for any ¢, ¥ € H

(¢, (@A + BB)* ¢y = {(aA + BB) ¢,v) = alA¢,¥) + B(Bo, )
=g, A™) + B, By = (¢, (@A™ + BB™) v,

and we can conclude again by density.

To see that A* is bounded consider ¥ € H; then we have

| A |* = (A%, A*) = (b, AA* ) < [$] |AA*$] < o] |A] A%,

and therefore we get |A*|| < || Al ||+]; as a consequence we get |A*| < | A, and therefore
j A% < A] = [[(A%)*] < |1A™],

and hence |A*|| = |A]|.

14



3 Exercise Sheet 3

3.1 Exercise 1 - Properties of orthogonal projectors

Let H be a Hilbert space. Let V any closed subspace of #; recall the definition of V' as

Vii={feM|{g.f)=0VYgeV}. (26)

We saw in class that the Hilbert space 7 can be decomposed as H = V @ V*, meaning
that V n V4 = {0} and that for any non-zero f € H there exists a unique element f;- € V
such that f — fy € V. Define Py f := fy; from the uniqueness of fy this is a well defined
linear mapping.

a Prove that P‘% =Py =Py

b Use a to prove that Py is bounded and if V' # {0} then ||Py| = 1.

¢ Prove that if V; and V5 are two closed subspaces of H then*

V1 il V2 — PV1PV2 = 0. (27)

Proof. We first prove that P‘% = Py . To prove this is enough to notice that if f € V' then
Py f = f. Indeed, let g :== f — Py f. Then by definition g € V. On the other hand, both
f and Py f are in V, therefore g € V n V+ = {0} and this implies Py f = f. Now from
the fact that Py f € V for any f € ‘H we conclude that P‘Q/f =Pyf.

To prove that Pj5 = Py, first notice that we have the trivial identity id = Py + (id —Py).
Moreover, by definition of Py and from the decomposition # = V @ V+ we get that
(id —Py) (H) < V*. Consider now f, g € H. We then have

(9, Pvf)=<{Pvg, [
=(Pvg, Pvf)+{Pvg,(id-Pv) f)

=(Pyg,Pvf)
={g, Pvf)—<(d—=Py)g, Pv )
=g, Pvf).

From the fact that this is true for every f, g € H we get that Py = Py .

To prove b for any f € H we get that

IFI? =<
= (Pyf, ) +{Gd=Py) f.
=(Pvf,Pvf)+{id—Pv) f,(id—Py) f)
= [P fI* + |id =Pv) f]

4We denote with L the condition of two subspaces of an Hilbert space H of being orthogonal, i.e., V3
is orthogonal to Va2, or Vi L V4 if and only if for any (f,g) € V1 x V2 we have (f,g) = 0.

15



From this we can deduce that Py is bounded and that |Py|| < 1. If V is non empty, let
feV, |f| =1; then |Pyf| = | f| =1 and this implies that |Py| = 1.

To prove c first suppose V; L V5 and f € Va. By definition of Py; we have that f — Py, f €
Vit; then we get that

Puf=f—(f—Pnf)eVinVi"= Py, f=0.

Consider now f € H; given that Py, f € Vo we can deduce that Py, Py, = 0.

Suppose now that Py, Py, = 0. Consider now f € V1, g € V5. Then we have

(fr9) =<{Pn [, Png) = {f, Py Prg) = 0.

Given that f and g were generic this implies that Vi 1 V5.

3.2 Exercise 2 - Derivative of inner product (complement to the class)

Let ¢ (t) and 9 (t) differentiable functions on the Hilbert space H, meaning that the limit

do .« .. ¢(t+h)—o(t)
g ()= fimy h (28)
exists in the norm topology of H for each t € R, and similarly for v ().
Prove that p do )
SO0, (W) = o (0,9 (0 + D), () (29)
Proof. First notice that (28) means that
do ¢(t+h)—o®)| _
o] Pl h =0
In particular this implies that
fim 1o (41 = o0 < fim ] (15 (0= 2EE=20 4 %)) —o

and therefore ¢ (t) is also continuous in the norm topology of H, and similarly for v ().

Consider now (29); we get

d o (BB G(EHR) — (1), (1)
So (), (1) = lim i -
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The term inside the limit can be decomposed as follows:

%(<¢(t+h),¢(t+h)>—<¢(t)ﬂ/f(t)>) ~

= %(<¢>(t+h)—d>(t),w(t+h)>+<¢(t),¢(t+h)—w(t)>)
¢(t+h)—9(t) ¢(t+h)—o(t)

= (PR (14m) — () + (EEE R
+<¢(t),¢(t+h}1_w(t)>.

We now study the limit of these three terms. The first one can be bound completely, so

we can apply Cauchy-Schwarz to get
¢(t+h)—o(t) ¢(t+h)—¢()
h

I
im | Y

h—0

,w(t+h)—w(t)>|<lim

h—0

(e +m -0 0]

d
= lim ‘d‘f (t)‘ [ (t+h) = (t)] = 0.

For the second term one can proceed as follows. Using the fact that ¢ (¢) is differentiable
and applying Cauchy-Schwarz again we get

el -6 o
ti | EEERIZ2O ) - 2 )0 1) <
< iy | 2= S ) o ] <0

Proceeding similarly for the third term we get the result.

3.3 Exercise 3 - - [A, B] is self-adjoint

Let ‘H be a Hilbert space. Consider A and B bounded self-adjoint operators on H. Prove
that - [4, B] is self adjoint.

Proof. Recall that in the last exercise sheet we proved that (AB)* = B*A* and that
(aA)* = aA* for any A, B bounded operators on H and for any o € C. We therefore get

1 * 1 1 1
Loan) = Lasr— Lo Bay = L (Brar — a*p*
(1AB1) == A8 = - . )
_ Y Ba—aBy— LB A= Lia B
ik GRS Rt

17



3.4 Exercise 4 - Properties of the commutator

Consider a vector space V over C, A, B, C linear bounded operators on V and « € C.

a Prove that [A, B + aC| = [A,B] + «[A,C].

b Prove that [B, A] = — [A, B].

¢ Prove that [A, BC| = [A,B]C + B[A,C].
[A

d Prove that [A,[B,C]] = [[A4,B],C] + [B,[A,C]].

Proof. To prove a notice that

[A,B+aC] = A(B+aC)— (B+aC)A=AB— BA +aAC — aCA
— [A,B] +a[A,C].

To prove b one can see that

[B,A] = BA— AB = — (AB — BA) = — [A, B].

To prove ¢ we look at the right side to get

[A,B]C + B[A,C] = (AB — BA)C + B (AC — CA)
— ABC — BAC + BAC — BCA = [A, BC] .

To prove d we notice that

[A7 [B7 C]] + [B7 [07 A]] + [07 [A7 B]] =

— A(BC —CB) — (BC - CB) A
B(CA— AC) — (CA— AC)B
C(AB — BA) — (AB — BA)C =0

+ o+

This implies in particular

[Av [B7C]] == [B7 [Cv A]] - [Cv [AvB]] = [[Av B] ) C] + [B7 [A,C]] :

18



4 Exercise Sheet 4

4.1 Exercise 1 - Two bounded operator cannot commute in a nontrivial manner

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
a € C\ {0} such that
[A, B] = aid. (30)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider |[A, B"]| and find an absurd.

Proof. Assume that both A and B are bounded operators. Consider for any n € N the
commutator between A and B™. We have

[A,B"] = [A,BB"'| =[A,B] B" ' + B[A,B"'| =aB" ' + B[4,B"'].

We can then prove by induction that [A, B"] = naB"!; indeed if n = 1 the statement
is trivially true, and if we assume the statement to be true for n — 1 we get

[A,B"] =aB" '+ B[A,B" | =aB" '+ B((n—1)aB"?) = naB"" .

Consider now the norm of the commutator; we get

I[A, B™]|l = |AB™ — B"A| < 2[ A} | B"|
< lAllBI"-

Given that [A, B] # 0 we can deduce that |A| # 0. We then get that

(07

n—1
—=_ ) nlB|>0
2 !A!>

«
B"| > ——n|B"! >...><
18°1 > G127

and from this we deduce that for any n € N we have B™ # 0. We then get

nlal B < 2 A)|B"| < 2|Al B [B"| = nlal <[A]]B].

Given that the last inequality holds for any n this gives us a contradiction.

4.2 Exercise 2 - Fourier transform of the complex gaussian
a Prove that for any « € C such that Re () > 0,

.172 2 x2+y2
<J e2adx> =J e~ 2 dxdy (31)
R R2

= 27, (32)
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where the integral over R? can be evaluated using polar coordinates. Deduce that
12
J e zadr = V2ra, (33)
R

where the square root is the one with positive real part.

b For all B> A > 0 and « € C\ {0} we have

B 2 a s
(&4 2ad:[j:——e 2a
T

B B 2
- f 2 e~ 3ada. (34)
A

A

Using this, prove that the integral in (33) is convergent for all nonzero o with
Re (a)) = 0, provided the integral is interpreted as a principle value when not abso-
lutely convergent, where the principal value is defined as

R
PV fR f(z)dx = lim JRf (x) dx. (35)

R—0

¢ Prove that the result of a is also valid for nonzero values of a with Re (a) = 0, at
least in the principal value.

Hint: Given n # 0, show that the principal value from A to +o0 of exp [—Q(%me)]

is small for large A, uniformly in v € [0, 1].

1 . : Bt 1.2 m  ,m 2
— PV tkr ,—ig -k dk = igps T 36
o fRe € \ 2mint € " (36)

where the square root is the one with real positive part.

d Prove that

Proof. We start by proving point a. Using polar coordinates we get

22 2 22442 +00 02 02
(J e_2adx> = J e 22 dxdy = 27rj e 2apdp = — 2wrae” 2«
R R2 0

To recover the integral we want is enough to apply the square root, and given that for
real values of a the integral we get is positive, we choose the positive determination of
the square root to get

+0
= 271,

0

22
f e 2adxr = 27a.
R
To prove b we first use (34) to estimate the principal value. Fix A > 0; then we get

22 R #2 A 2 R
PV | e 22dz = lim e 2adx = e 22dx + 2 lim e 2adx
R R—+ow —R —_A R—+0 A
A »2
= J e 22dr+2 lim [— —e 2a

—A R—+00
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Now using that Re (a) > 0 we have that

e L' (A, +o0)

_ R? 1 Rr?
<ehelE) <, ‘xze_“

and applying this to the limit we get that

22 42 2 2 +o 9
PVJ e_Zadxzf e_5d$+36_% —J @
R A A A T
and therefore the integral is convergent for any o with Re («) = 0.

To prove c¢ is enough to consider o = in with n € R\ {0}. In this case we get

22 R 2 R g2
PVJ e'2dr = lim e'2ndr = lim lim e 200+ dx
R

R—+w J_p R—+o0 J_py—0t
R 22
= lim lim e 20+indg,

R—>+w0~y—0t J_R

where in the last equality we could bring the limit outside of the integral because the
integrand is uniformly bounded in modulus by 1 which is integrable in [—R, R]. From the
formula above and from the fact that now Re (y + in) > 0 we now have that

2

R 22 +00 -
J e 20Findr = A/27 (v +in) — QJ e 20+ dy.
R

—-R

Moreover we can assume that v € [0, 1] and use b to get that

+00 22 L 22
f e 20+t dx|l = lim J e 20+ dx
R L—+xo|JR
; : L . 2
i __ L% in ___R? +in __ =
= lim _ue 2(y+in) 4 ue 2(y+in) — we 30+ do
L—+0 R R T

; R2 +00 : 2
R o Y - dy
R X

TRe(sdy) WL+ n’

4 R
< S ly+inle :
gy Hinle R

and therefore, passing to the limit we get

too a2 44/1 4+ n?
lim lim e 200+tindyl < lim lim VT 0.
R—+0 'y~>0+ R R—+ 'y~>0+ R

As a consequence we get that

.2
PV | ¢%rde = lim lim /27 (v + 7)) = A/2min,
fRe @ R;ﬂfmg@\/ m(y +in) = A/2min

which concludes the proof of c.

To prove d we first notice that

ht 2

2m

hit (k: mx>2 mx

2_ —_ - -
Wo—ke =g ht oMt
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Using ¢ we then get

o
1Pvf etk idh g _ € Pvf e~k dk
2 R 2 R

m - m 2
= —e'2m T
2miht

which concludes our proof.

4.3 Exercise 3 - Counterexample for the closed graph theorem

Consider a separable Hilbert space H and a complete orthonormal system for it {¢y,}
Assume that ¢, cannot be written as a finite linear combination of elements of {¢y,},, -
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of {¢y}, .y and of . On D define the operator T': D — H defined as

neN-

T (OéooQOOO + Z an90n> = OpPoo- (37)

neN

Prove that T' is not bounded.
Hint: Use the closed graph theorem.
Proof. Suppose that T is bounded. Given that D is dense in H, we can define T an

extension of T" to H. Consider now the graph of T; given that {¢n}, .y is a complete
orthonormal system there exists a sequence {f3,},cy such that

N
li = Y.
i, 2, uion = 0

Recall the definition of G (:7") — {@ f’@b) E H} < H x H. Given that we have that

N
T (Z Bn@n) = 07
n=0

we get that (27]:;0 Bnen, O) eG (T), and as a consequence (¢4,0) € G (T) On the other
hand, by definition of T we get that T'ws = ¢u, and therefore that (¢4,0) ¢ G (f’) For

this reason we get that G (fZN“ ) # (G (fZN“ ) On the other hand 7T is trivially linear on H, so
we can apply the closed graph theorem to imply that 7' cannot be bounded.

O
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4.4 Exercise 4 - Free Schrodinger equation preserves the domain

Recall the definition of H? (R) as
H?(R) := {¢ e L (R) | k%) e L2 (R)}

Recall that in class we defined the map that to any initial datum o € L?(R) would
associate ¢, := Uy (t) 1o, defined via the Hamiltonian Hy := —% with domain D (Hy) =
H? (R). Indeed if Uy () 1o is defined for any 1y € S (R) as the unique solution to

{ ihdy (U (t) o) = HoUy () Yo

U (t) wo‘t:O = 1o, (38)

then Up (t) is defined by density on the whole space L? (R), and coincides with Up (t) on
S (R).
Prove that if ¢9 € D (Hy) then ¢y € D (Hp).

Proof. We saw in class that Uo (t) has an explicit form; indeed for any 1y € L? (R) we get
thet

~

~ .k
F (To (1) o) (k) = ™355 (a),
where F indicates the Fourier transform operator

Now, if 19 € H? (R), we get by definition that k%¢ € L? (R). As a consequence we also
get k2F ((70 (t) 1/1()) e L2 (R), and therefore U (t) vo € H2 (R).
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5 Exercise Sheet 5

5.1 Exercise 1 - Well-posedness of standard deviation

Let ¢ be a unit vector in L? (R) such that z1), x2¢ € L? (R). Prove that

X%y = ((Xu)*, (39)
where as we defined in class, X is the operator given by the multliplication by x and
(A)y = (W, At). (40)

Hint: Use Jensen inequality.

Proof. Recall that Jensen inequality states that if p is a probability measure on a mea-
surable space §2, f is a real valued function and = is a convex function from R to itself,
then we have

=([r@ane) <[ zos@dn).

Consider now the space © = R. The measure ¢ ()| dz is a probability measure because
1) has L?-norm equal to 1. Now, if we consider f (r) = z and Z (¢) = 2 in Jensen inequality
we get

(o = ([ = w<x>|2dx)2 < [ ol @l s = 2.

5.2 Exercise 2 - Operator norm of multiplication by a sequence

Let a := {an},c; be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions b := [? (Z). Consider the operator that to the sequence

x := {Tp}, ., associate the sequence Mox = {0nTn},,cz-

Suppose that ||a|,, := sup,,cz |an| < +00. Prove that M, is a well defined linear bounded
operator from b to itself and prove that |M,| = [o],,.

Proof. First notice that for any element of the sequence Moz we get |anxy| < o, [nl-
As a consequence we get

1 1
2
2 2
| Moz, = (Z |nen| ) < ey <Z |n] ) = llalo 1y -

neZ neZ

N =

Therefore M, is well defined from § to itself and it is trivially linear. From the previous
inequality we also get that [M,| < [|laf|-
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To prove the equality, first define for any j € Z the element e; := {J;,},., € b. We
get that [le;j||; = 1 and that Mye; = aje;. Now, by definition of sup there is a sequence

{nj}jeN such that ‘Oén]-| — |a,, as j — 400, and we then get

”aHoo = jEIJ,I-loo |O‘nj’ = jhr_&o HMaenj ”h < lim [ M| Henj = | M|,

Jj—+00 Hh

concluding the proof.

5.3 [Exercise 3 - No solutions for too low energy in the potential well (comple-
ment to the class)

Consider the Hilbert space b := L? (R). And the operator H define

D(H) := H*(R) = {w e L*(R)| k%) e L2 (R)}

2 02
H=—"" Lvx
2m5m2+v( ),

where the operator (V (X)) (z) =V (x) ¢ (x), with

_f —C if |z <A,
Viz) = { 0 if 2] > 4, (41)

and with A and C positive constants. Consider E € (—oo0, —C'] and prove that there is no
nonzero g € D (H) such that

Hip = Evp. (42)

Proof. Suppose there exists E such in the text of the exercise. Given that ¢¥p # 0 we can
assume that [¢p|, =1 As a consequence we get

K2 02
E =Yg, EYg) = Yp, HYg) = (YE, —%@ww + WE, V (X)YE).

Given that ¥ € D (H) we can integrate by part the first term and obtain

K2 02 K2 0 0 2| o
Vg, —%$¢E> = %<%¢Ea %¢E> = om afxl/)E = 0.

On the other hand we have

e,V (X)E) = — e,V (X)¥p)| = — |V, [¢el; = —C.

Given that F € (—o0, —C] we get

K2 02
—-C>=FE =g, —%W%@ + e,V (X)YE) = p,V (X)YE) = —C,

and therefore £ = —C.
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Now as we saw in class the function ¥ g needs to satisfy the following equation

h2
_2711// = —CYg if |z| < A,

= (€ By =0 if o] > A
lim g (z)= lim ¢g(x),

T—+A— r—+At
lim () = lim ().
xHiA_?/)E( ) xHiAJZ)E( )

Suppose now x € (—c0, —A). Then we get ¥ = co + ci1z. Given that ¥ € h = L? (R), we
then get that ¢y = ¢; = 0. Proceeding similarly for x € (A, +o0) we get that ¢¥g (x) = 0
for any |z| > A.

So ¥ g solves

2mC .
{ w% = h2 ¢E if ’.’E‘ < A7
Vp (£A4) = Y (£4) = 0.
Now the solution to the differential equation is ¥ g (z) = c+e< VamC/h)e | . o=(V2mC/h)z

From the fact that ¢p (—A) = ¥p (A) we get

”2;:0,4) -0,

(c4 —c_)sinh (
which in particular implies ¢, = ¢_. As a consequence we get

Vg (x) = 2¢4 cosh ( 2]7;1056) .

Using the fact that ¥ (A) = 0 we get ¢4 = 0, implying that the unique eigenfunction
corresponding to E is the zero vector, which is absurd and concludes our proof.

O

5.4 [Exercise 4 - Odd solutions to the potential well (complement to the class)

Let h, H and D (H) as in Exercise 3. In class we saw that for any E € (—C,0) there is
always at least one nonzero even solution ¢ g to the problem Hygp = Evg.

Prove that if Av2mCh < § there are no nonzero odd solutions, and for larger values of
C there is always at least one.

Proof. Proceeding as in class it is easy to see that any odd solution ¥g to HYyp = Eyg
is such that
cem @A) if g > A

Vg (z) = JamTEl
—ce QH‘E‘ (@+4) if ¢ > A.
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This explicit form of the solution outside the ball |z| < A gives us boundary conditions
for the problem that the solution needs to solve inside the ball:

hQ "
_%QZJE = (C + E)¢g,

YvE (£4) = +c,
2m|E
oy () = - V2B,
Out of convenience, we define, similarly as in class, the constants x := (2mC) /A% and

g := — (2mE) /h?. We then have that E € (—C,0) if and only if £ € (0, k).

We are then looking for the odd solution to the problem

_w% = (H - 5) wEv
Vg (£A) = +c,
Vg (£A) = —/ec.

A generic solution for this problem is of the form ¢ (z) = asin (v/k — ex)+B cos (v — ex),
with « and 8 to be determined. Given that our function is odd, we have that 8 = 0. The
boudnary conditions then gives us the following relations:

{ asin (\//1—514) =c,
ok —ecos (Vi —eA) = —y/ec.

If ¢ = 0, the first equation tells us that if we do not want the trivial solution, /x — A =
nm, with n € Z. This implies that cos (v/k —€A4) = +1, and applying this to the second
equation we would deduce that x = ¢, which is not possible. So ¢ # 0 if and only if a # 0.
Suppose then ¢ # 0 (and therefore o # 0). Dividing the second equation by the first one
we then get the following matching condition

Vi —ecot (Vi —eA) = —y/e.

Now, if \/kA < § we get that \/k —cA € (O, %), and as a consequence the term on the
left of the matching condition is strictly positive. On the other hand the term on the right
is strictly negative, therefore the matching condition cannot be satisfied and there is no
odd solution to the problem.

Consider now y/kA > Z; define the interval I := (max {0,k — 72/A?} , k — 7?/4A?) and
the following mapping:

¢ 1 > R
e — e+ Vk—ccot (VE—cA).

If max {0,k — 72/A?} = 0 then we have that /A < 7 and cot (v/k — €A4) € (—0,0); in
particular

E() = <—\/E‘cot (VEA)| Ak — j;) :
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If max {0,k — n?/A?} = k — 7%/ A? then we have that

&) = <*oo,x//£*j:;>.

In both cases 0 € £ (I) and we have that there is a solution to the matching conditions,
which implies the existence of a nontrivial odd solution. ]
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6 Exercise Sheet 6

6.1 Exercise 1 - A preserves a space, A* preserves the orthogonal

Let V be a closed subspace of H Hilbert space. Let A be a linear bounded operator on H
such that A (V) € V. Prove that A* (V1) c V.

Proof. Consider 1) € V1 and let ¢ € V. We then get

<307A*1/]> = <A§0771Z)> =0,

because Ap € V and 1 € V. Given that ¢ was generic, we get that A*¢ e VL.

6.2 Exercise 2 - Inverse of the adjoint of an invertible

Let H be an Hilbert space. Let A be a linear bounded operator on ‘H with linear bounded
inverse A~!. Prove that (Afl)* A* = A* (Afl)* = id. Deduce that A* is invertible and
that (A*)~' = (A71)",

Proof. Given that A is invertible we get that both A* and (Afl)* are well defined linear
bounded operators. Recall that we proved before (see Exercise Sheet number 2) that
(AB)* = B*A*. We then get id = id* = (AA_l)* = (A_l)* A*. In a similar way, we also
get id = id* = (A714)" = A4* (A71)".

Now, given that (A_l)* A* = A¥ (A_l)* — id then A* is invertible and (A4*)~! = (A_l)*.

O
6.3 Exercise 3 - Creation, annihilation and number
Consider the Hilbert space H := £2 (N).
a Define the operator A as
(Aar),, = o1 Vn e N, (43)

for any o = {an},cn € H.

Prove that A is a well defined linear bounded operator, find its norm and its spec-
trum.

b Consider A* the adjoint of A. Show its explicit action and find its norm and its
spectrum.

¢ Define B := A*A. Prove that B is a self-adjoint operator, show its explicit action
and find its norm and its spectrum.
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Hint: Recall that if T is a linear bounded operator, the spectrum o (T') is a closed set,
p(T)=C\ o (T) the resolvent of T is defined as

p(T) := {)\ e C| (T —Xid)™! is a well-defined, linear, bounded opemtor} , (44)

and that o (T') < Byp| (0), where Br (0) := {a € H| |af, < R}.

Proof. To prove a, first consider o = {an},,cnys B = {Bn}neny € H and A € C. We get

(A(a+AB)), = (a+AB), 41 = ant1 + Aut1 = (Aa), + A(AB),,

and therefore A is linear. To prove that is bounded consider « € H; we get

|Aal = 3 [(A), " = ) lanl* < a3,

n=0 n=1

therefore A is well defined from # to itself and |A| < 1. Let now e/ = {§;,}, x; on the

one hand Hej H2 = 1, on the other we also get that for any j > 0 we get HAejH2 = 1,
therefore |A| = 1.

Given that |A| = 1 we get that o (A) < Bj (0). Consider now A € B; (0). If we look for a
solution of Ao = Aa, we get that such a needs to satisfy

Qnt1 = Q.

It is easy to see that a,, := A\« satisfies the equation, and given that

|ovo |
lally = D7 AP ol = 5
n=0 1— |)\|

we also get that a € H. This implies that « is an eigenvector for A and as a consequence
B; (0) < 0 (A). Given that the spectrum is always a closed set we get By (0) < o (A) =
o (A) € By (0), and hence o (A) = By (0).

To prove b, let a, v € H. We get
Z %(A*O‘)n = <77A*O‘> = <A77 a> = Z (A’Y)nan = Z Tn+1Qn = Z nOn—1-

n=0 n=0 n=0 n=1

Given that o and v were arbitrary we get that

* o o _ an_l 1f n > 07
(A%a)y i= (1= 0no) an-1 = { 0 ifn=0.

From the definition we easily get that |A*«|, = |y, and therefore |A*| = 1.

If we now turn to the spectrum, we get that given that |A*| = 1, then o (A*) < By (0).
Consider now A € By (0) and let v € H. We look for « so that (A* — Aid) @ = . Then we

have

QUn—1 — AQp = Y, if n >0,

—Aag = 0.
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As a consequence, we can sum up the coefficients to get

an <oz] G 1> Z )\Jaj Zn: )\jflozj_l
a =1

n n—1
= Z Maj — Z Naj = Nay, — ag.
i=1 i=0

On the other hand, we use the fact that (A* — A\id) a = v to get

n 4 1 n '
ap =" (Z N (aj — )\aj_1> + a0> = —)\~(ntD) Z Ny
§=0

j=1

If [A] < 1, it is easy to see that there exist v € H so that |a,| — 4+ as n — +oo,
and therefore A* — Aid does not have an inverse from H to itself. As a consequence
B; (0) € 0 (A*), and given that the spectrum is closed, we get B; (0) € o (A*) < By (0),
which implies o (A*) = By (0).

To prove ¢, a simple computation first gives that (Ba), = (1 — d,,0) o, From this it is
easy to see that | B|| = 1. B is also self-adjoint because we get B* = (4*A)* = A*A** = B
Given that Be® = 0 and that Be/ = ¢/ for any j > 0, we also get that {0,1} < B. Given
that B is self-adjoint, o (B) < R. Let now A € R\{0,1}. If we consider the equation
(B — Aid) o = 7, we get that fixed v € H, a needs to be
(1 =X an =, if n >0,
_)\OZO =70,

and as a consequence we can define

1 .
-l ) = if n >0,
((A Ald) 7>n ’ { —%fyo if n =0,

and this is a well defined linear bounded operator, implying that A € p(B). We then
conclude that o (B) = {0, 1}.

O]

6.4 Exercise 4 - Operator norm of multiplication for a function

Consider the interval I = (a,b) € R and the Hilbert space H := L? (I). Consider ¢ € C (I)
a real valued continuous function with |||, < +o0. Consider the operator T, defined for
any ¥ € H as

To (x) := @ (2) ¥ (). (45)

Prove that T, is a well defined linear bounded operator and prove that o (T,) = ¢ ().

Hint: Show first that ¢ (I) < o (Ty,) and use the fact that the spectrum is closed to show
—\ C
that the same s true for the closures. Next, show that (O‘ (T¢)> < p(T,) to conclude.
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Proof. Let yo € ¢ (I) and let xg € I such that ¢ (z¢) = yo. Consider the sequence given
by

We then get that [¢,[, = 1 and therefore

lim Mw%_ﬂ%”2=1ml<v% %?nwcw—yym>

n—+00 HUJHHQ n—+00 o— o
CCO"Fﬂ %

From the mean value theorem for integrals, given that ¢ is a continuous function, we get
that

n——+ao0 1
* L0~ 3,

wo-&-%
lim nj ¢ (z)dx = ¢ (x0) = v,

and as a consequence
lim HT<p7/}n - y%“g

= 0.
n=too [l

As we saw in class, this implies that y € o (T,,); this implies that ¢ (I) < o (T},), and given
that the spectrum is closed we get that ¢ (I) < o (T},).

On the other hand, let A ¢ o (I); then the operator (T'— Aid) ™" is defined as

(T = Xid)™" ¢ (2)

I
<
&

and its norm is bounded by H(T— )\id)_lH < sup,eg | (2) — A|7Y, which is finite by

hypotheses. As a consequence we get that o (T,,) = ¢ (I).
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7 Exercise Sheet 7

7.1 Exercise 1 - Application of the UBP to the dual space

Let V' be a Banach space and E a nonempty subset of V' such that for any £ € V* there
exists a finite constant C¢ such that

Sup € ()| < Ce. (46)

Prove that E must be bounded.
Hint: Consider the map J : V — V** defined as
[J(@)](§) :=&(x)  VYoeV, eV™ (47)

Prove that ||J (z)|+« = |z|| for any x € V. Use the Uniform Boundedness Principle to
show that J (E) is bounded and conclude.

Proof. Consider z € V. Recall that we proved that for any « we have

|z = sup ¢ ()]

£eV*, |lglyx=1

We then get

| J(@)yee = sup ([T (@)](E)] = sup  [{(z)] =lz].
€eVH, €]y s=1 geV*, [efyx=1

Consider now the set J (E) < V**. Consider £ € V*; using the hypothesis we then get

sup |[J ()] (§)] = sup [¢ ()] < Ck.
zell el

We can then apply the uniform boundedness principle to get that there exists a constant

C' such that
sup |J (@) s < C.
zel

As a consequence we get
sup |z| = sup |J (@) ]+ < C,
zelR zel

and therefore E is bounded.

7.2 Exercise 2 - Projection valued measures

Consider (X, ) a measurable space (i.e., a set X with a o-algebra € in it), and consider
a projection-valued measure with values in 4 an Hilbert space. Let E, F € (.
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a Prove that if £ n F' = (& then Ranp (F) L Ranp (F).

b Prove that u (E) p (F) is an orthogonal projector and that

Ran (u (E) u(F)) = Ranp (E) nRanp (F). (48)

Proof. To prove a first recall that from the definition of projection-valued measure we get
that for any E, F € Q we have u (En F) = u(E) u(F). Therefore if E n F = & we
have that p (E)pu(F) = p(F)p(E) = p () = 0. Let now ¢ € Ranp (E), ¢ € Ran p (F).
Given that p (E) and p (F') are orthogonal projectors, we get ¢ = p (E) v and éu (F) ¢,
and as a consequence

(@ 10) = (u(F) ¢, 1 (E) ) = (¢, (F)" o (E) ) = {, pu (F) p (E) 0y = 0,
and therefore Ran i (E) L Ran p (F).

To prove b, first we get that in general for any E, F € Q we get pu(E)u(F) = u(En F),
and given that the latter is an orthogonal projector, also the former is. To prove (48), we
first prove C. Indeed we get trivially that Ran (u (E) p (F')) <€ Ran i (E), and on the other
hand Ran (u (F) p (F)) = Ran (u (F) pu (E)) € Ran p (F'), therefore it must be included
in the intersection.

On the other hand, to prove 2 let 1) € Ran i (F) nRan p (F'). Then we get that p (E) ¢
F

¥ = 11 (F) . As a consequence we get & — () — i (E) u (F) % € Ran (1 () i (F)),
and this concludes the proof.

O

7.3 Exercise 3- [A,B]=0=[f(A),B]=0

Let H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B
a bounded operator over H such that [A, B] = 0. Consider a bounded complex-valued
measurable function f. Prove that [f (A),B] = 0.

Proof. Notice first that if [A, B] = 0 then [A™, B] = 0 for any n € N. As a consequence,
if f is a polynomial we also get [f (A), B] = 0. Consider now f a real-valued continuous
function; from Weierstrass theorem we get that there exists a sequence of polynomials
pn, that converges uniformly to f as n goes to infinity, and applying the result to the
sequence of polynomials we get that also f(A) commutes with B. Now, any complex-
valued function f can be written as f = Ref + «Imf, and given that Ref and Imf are
continuous and real-valued the result is also true for complex-valued continuous functions.
Consider now the set F : {f : 0 (A) — C| [f (A), B]}; so far we proved that any complex-
valued continuous function is in F. Given that F is closed by uniformly bounded pointwise
limit, we get that F = L (¢ (A);C), which concludes the result.

O]
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7.4 Exercise 4 - Norm and spectral radius

Let H be an Hilbert space. Let T be a bounded operator over . We proved in class that
in general R (T) < ||T, where

R(T):= sup |A|. (49)
Aeo(T)

Exhibit an explicit operator such that R (T") < |T|.

Proof. Consider the operator T' defined on the Hilbert space H := L? (I), with I = (0, 1)
as

o) = [ v @

T is a well-defined bounded linear operator and we proved in one of the exercise sessions
that the spectrum of T'is o (T') = {0}, and therefore R (T") = 0. On the other hand, T # 0
implies [T > 0= R(T).

O]
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8 Exercise Sheet 8

8.1 Exercise 1 - Commuting operators and invertibility

a Let H be an Hilbert space. Suppose A, B € B(H) with [A,B] = 0 and A not
invertible. Prove that AB is not invertible.

Hint: Prove first that if AB were invertible then A would have both a left and a right
inverse. Then prove that those would need to be equal and conclude.

b Prove that if we do not assume A and B to commute, the result in a is false.

Proof. To prove a, suppose first that AB is invertible; this means that there is an operator
C such that ABC = id = CAB. Given that [A, B] = 0, we can also write A (BC) =id =
(CB) A. Now, to prove that BC' = CB, given that A and B commute, we can write
BC = (CAB)BC = CB(ABC) = CB. Therefore this implies that if AB is invertible

then A is invertible, proving the result.

To prove a is enough to consider a counter example; consider A and A* as in Exercise 3

in the Exercise Sheet of the 14.02.2014. We have that [A, A*] # 0, both A and A* are
bounded and not invertible, but AA* = id, which is invertible.

O]

8.2 Exercise 2 - An operator with a closed extension is closable

Let H be an Hilbert space. Let A be an unbounded linear operator on H. Suppose there
exists a closed operator C that extends the operator A. Prove that A is closable.

Proof. Recall that G (T) := {(¢,Tv¢) € H x H| » € D(T)} is the graph of an operator T'.
Consider G (A); we want to prove that it corresponds to a well defined (closed) linear
operator. Define the following operator:

D(B):={ye|dpest (,0) e G(A)}
B:= C‘D(B)'

Given that D (A) < D (B) is dense, we get that B is densily defined. Moreover, from the
linearity of C' we also get that B is linear.

From the fact that C is an extension of A we get that for any ¢» € D (A4), By = Cy = Ay,
so B is an extension of A. As a consequence, G (4) € G (B).

On the other hand, given that C is a closed extension of A we get that G (A) < G (C
G (C), so if (¢, ¢) € G (A) this implies ¢ = C. On the other hand, if (¢, ¢) € G (A)
then ¢ € D(B) and therefore By = C¢ = ¢ and (¢,¢) € G (B). Therefore we have
G(A) < G(B).

Suppose now that (i, By) € G (B). Then given that 1) € D (B) there exists an element
¢ € H such that (¢, ) € G (A); but G (A) < G (C) implies ¢ = Cyp = B), and therefore
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G (B) < G (A), which together with the inclusion above shows that G (B) = G (A) and
implies that A is closable.

O
8.3 Exercise 3 - Explicit norm of resolvent operator
Let H be an Hilbert space. Let A be self-adjoint.
a Suppose \g € p(A), where p (A) is the resolvent set of A. Prove that
1
PR PR - 50
=200 = G oy o

where d (z,Y) := inf ey |z —y|, withz e C, Y < C.

Hint: Think of (A — Xo id)f1 as a function of A in the sense of the functional calculus
of A.

b Let \g € C and suppose that there exists € > 0 and some nonzero 1 € H such that
| A — Aot < el (51)
Prove that there exists A € o (A) such that |\ — A\g| < e.

Proof. Recall that there exists a projection-valued measure p? such that

A= At (A)
L(A) ey
f(4) = f Dt .

Let Ao € p (A); given that the spectrum of A is closed, we have d (Ag, o (4)) > 0. The func-
tion f (A) := (A — Ag) " is then continuous and bounded on ¢ (A), with SUPjeq(a) If (N)] =
d (Mo, o (A)). Now, we know that if g () = XA — Ao, on the one hand g (A) = A — A\gid
and on the other hand g (\) f(\) = f(A)g(A\) = 1. As a consequence we get that
f(A) = (A—=Xoid)™'. To get (50) then we use the functional calculus to get

— sup [f ) =

(A= oi0)1] = e 00, ()

j £ d (V)
o(A)

To prove b, assume (51); if A\g € 0 (A), we can take A\ = \g. Assume now that Ay € p (A).
We have that

) (A= Xoid) ™" (A — Agid) ¢
(4= 201! > | = Sed ol L = hodial 7 £
Using then (50) we get

R R e ]

which concludes the proof.
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8.4 Exercise 4 - The delta is not a closable operator

Let H = L% (I), with I = [0, 1]. Consider the operator A with domain D (A4) = C (I) and
with action

AP (x) =4 (0), Ve D(A). (52)

Prove that A is not closable.

Proof. Consider the graph of A given as G (A) = {(¢,v¥(0))| v € C(I)}; considering
1 =0, we get that (0,0) € G (A).

Moreover, let ¢, be a sequence of continuous functions with ¢ (I) € [0,1], ¢ (z) = 0 for
any x € (1/n,1] and ¢ (z) = 1 for any = € [0,1/(2n)).

Then given that |¢| < 1/n, we get 1, — 0 in H as n — +00; on the other hand, we
have that A, (z) = 1 for any = and for any n, so Ay, — 1 in H as n — +o0. As a
consequence, (0,1) € G (A), which implies that A is not closable.

O]
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9 Exercise Sheet 9

9.1 Exercise 1 - Hardy inequality

Let ke Z,de N, k+d # 0. Let D be defined as

[ ¢ (RY if k=0

ll_{cgwwxmn k<1, k+d0, (53)

Prove that for any ¢ € D

4
| ool ax < o |90 (o) ax (54)
Rd |k + d|” Jra
Hint: Use the fact that
1 & oo k
k — —_ .

a _k+dg;%yOx|%) (55)

to integrate by part on the left hand side of (54) and then use the Cauchy-Schwartz
inequality.

Remark: Notice that in particular if £k = —2 (and d # 2) this implies that as operators

1 4
LN
=<2 S -2 (56)

A generalisation of this formula is called in the literature the Hardy inequality.

Proof. We will use the shorthand notation of div for a divergence of a vector field, meaning
that if F is a vector field on R?, we define

d
divF (x :Zai

With this notation in mind we have that the Green theorem can be written as
J divF(x)g(x)dx:—J F Vg (x)dx,
Rd Rd

and we can write |x|* = (k + d) "' div (|x\kx>
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Let ¢ € D and consider the left-hand side of (54); we get

1

k+d R4

1
= —m n |X‘kx -V <|¢ (X)‘Q) dx
= _% Rd |X|k T - Re (WV@ZJ (x)) dx
2
k + d| fRd %" (x)| [V (x)] dx

2 2(k+1—n) 2 % 2 %
< o ([ e wepac) ([ Prive tlax)

If we choose n = % we get

[N aiv (|x[* ) o (o) dx

<

4
L ax < ot [ 9 o

O
9.2 Exercise 2 - The Coulomb hamiltonian is self-adjoint
a Let H := L* (R?). Define (as in class) the operator Hy with®
D (Ho) = H* (R?) = {w e | [k[*$ (k) € L (R?) }, (57)
How = ~A0 = (K6 (1)), vy eD(Hy).  (58)

Prove that Hj is closed.

b Let D (H) := D (Hp). Define H := Hy+ ﬁ Prove that H is well-defined and closed.
(Assume, if necessary, to know that there exists a positive constant C' such that for
any & B2 (B?) it holds [] . < C [4]2).

Hint: Use the fact that H? (R3) c L™ (RS) to prove that is well-defined. To prove
the closure, use (54) from FEzercise 1 to show and subsequently use that Ye > 0,
Vi e D(H)

1 2
v < 2l + Vvl (59)

L2
to get that
2 1
H < —— —||H . 60
Howls < g =gy Wl + 7 10l (60)

¢ Prove that H is symmetric.

SRecall that we proved in the exercise session that if [¢| 2 = H (1+ |k|2) 12” ,» then H? (R?) is closed
L

with respect to ||| g2
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d Prove that H is self-adjoint.

Hint: Use the fact that ﬁ is a self-adjoint operator and apply the Kato-Rellich
theorem.

Proof. Recall that we proved in the exercise session that H? (R3) is closed with respect
to ||-| 2. To prove a, then, consider a sequence {1y}, . S D (Hop) such that ¢, — 1 and
HyY, — ¢ in H. As a consequence we get that {1y}, is @ Cauchy sequence with respect

to || 2 and therefore ¢ € H? (R?) = D (Hy) and Ho) = ¢, and hence Hy is closed.

To prove b we first prove that H is well defined. Given that ¢ € H? (R?’) c L* (Rg), we
get that

1

x|

2
_ [ 2 1 9
W= e S Wl | e | e fax

s x| Bi(0) x|
SAT[Y] o + [Pl g2 < (4rC + 1) [¢] g2 -

We then use Hardy inequality and the fact that for any 5 > 0 we have |k|* < 1/n+n/4 |k[*,
to obtain for any ¢ € CX (R*\{0}) that

? 2 22 l? 4,2 2
<9l =4 [ IE]D a0 dx < 10l +nHovl
L2 R3 n

[
N

2 2
< (Wuwuz wmﬂomz) |

Calling n = €? we obtain (59). As a consequence we get for any ¢ € C (R3\{0})

1 2
Vbl < [Huloo + | 0 < LU + 2 [olls + <ol

LQ

Choosing € < 1 and collecting the identical terms on the left we obtain (60).

Suppose {¥n},cy S D (H) and that 1, — 9 and Hy, — ¢ in H; then the sequences
{n},ey and {HYn}, . are Cauchy sequences and using (60) we get that also {Hotn},,cn
is. From a we then get that ) € D (Hy) = D (H) and that Hyy, — Hy. Moreover we
get that

< lim (47C + 1) [1hn — 9] 2

n—+00 2 n

lim '; (6o — )

(47C + 1) /|6 — Y132 + | Ho (6 — |22 = 0,

lim
n—+oo0
and as a consequence H?t,, — H1, so H is closed.

To prove ¢, consider ¢, p e D (H) = H? (R3); then we get

W, H ) = (Hb, ) = (= Aip, ) + (tp, .

x|
We already showed in class that —A is symmetric, so we get that
1

|
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and therefore H is symmetric.

To prove d notice that if we define the operator V' as the operator given by

D(V) i {1,[)67-[| ’xl‘ib(z)eﬂ}
Vi (2) =|1| (),

this is a well defined self-adjoint operator. Indeed it is trivially symmetric, and therefore
V* is an extension of V. Furthermore, let ¢ in D (V*) and consider ¢ € S (R3) the space
of Schwartz functions. In particular ¢ € D (V'), and we get

K, Vo)l < Cy |4 2 -

As a consequence, using Riesz theorem, there exists an element ¢ € L? (R?’) such that
(&, ¢y = (4, V@) for any ¢ € S(R?). This in particular implies that Vi = £ almost
everywhere, and therefore Vi) € L? (R3). By the definition of the domain of V we get
Y eD (V) and V is self-adjoint.

Now, choosing € < 1 we can use (59) to first get that D (Hy) < D (V). We are then in
the hypothesis of the Kato-Rellich theorem, and we can conclude that H = Hy + V is
self-adjoint.

O]

9.3 Exercise 3 - The square root is monotonous

Let H an Hilbert space and let A, Be B(H), A* = A, B* =B

a Suppose® A > id; prove that A is invertible with A~! € B (H) and that 0 < A~! < id.

b Suppose 0 < A < B; prove that for any A > 0, A+ \id and B+ id are invertible with
(A+Xid)™", (B + Aid) ™! € B(H) and that we have (B + \id) ™" < (A + Xid) ™'

¢ Suppose 0 < A < B; prove that VA < v/B.
Hint: Prove and use the fact that

ﬁ—lrwl(l— A >d>\ — (61)
_7T 0 \/X fU‘FA ’ -

Proof. To prove a we first notice that A > id implies that o (A) < [1, +o0), and therefore
0 ¢ o(A). By definition of spectrum this implies that A~' € B(#). Using functional
calculus, if y is the spectral measure associated to A, for any ¢ € H we get

“1y\ = 1 1 2
@A = [ a0 < s s | e <1l

Aeo(A

SRecall that A > 0 if for any ¢ € D (A), (1, AY) > 0 and that A > B if A— B > 0.
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Proceeding analogously we also get

RN 1 inf +
@AY =@ | a0 s w0

Those chains of inequalities imply that 0 < A~ < id.

To prove b consider A > 0; given that A > 0, we have

N|=

B+Aid > A+ Aid = (A + Aid) "2 (B + Aid) (A + Aid) "2 > id,

where we used the fact that A + Aid > \id and that (-) 2 is continuous and bounded on

[\, +o0) to define (A + Aid) 2.

Using a we then get that

id > [(A+ Xid) "% (B + \id) (4 + Aid) 2|
1
2

N|=

= (A4 Aid)2 (B + Xid) ™' (4 4+ Aid)2.

Multiplying both sides from left and right by (A + )\id)_% we can conclude.

To prove ¢, we first prove (61); we get

+o0 A +o +o
0 ﬁ(l_m)d)\: 0 \ﬂ($+/\)d)\:\/§fo ﬁ(l—i—)\)d)\
= \/E[Qarctan\r)\];roo = m\/T.

As a consequence we can write for any ¢ € H

Wy = [ e = [ 2 (1= ) a3

)

: 1 1 — AL g s :
Now, given that N (1 — t%\) < g (1 - t+ﬁAH) = JierlAp integrable in o (A) x

[0,4+00) with the measure given by the product of the spectral measure of A and the
Lebesgue measure, we can exchange the order of the two integrals to get

WA =[] (1 ) e

IS
+001

1 . =1
= ;ﬁ<1—ﬂA+tﬁ)>dw&

Using now b we get that for any ¢ € H

1 [+ 1 o
(W, VAY) = (b, — O ﬁ<1—t(A—|—t1d) 1>dtw>

which allows us to conclude.
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9.4 Exercise 4 - Exercise on norm of the resolvent

Let H be an Hilbert space. Let A be a linear self-adjoint operator on H with A > 0 and
A > 0. Denote with [-| the operator norm and with [-|,, the norm induced by the inner
product in the Hilbert space H.

a Prove that H(A + )\id)flu < 1/

b Prove that for all ¢ € H,

0l > A4+ xia)! wHi #2244 xia) ! ¢Hi | (62)
Conclude that HA (A+ )\id)’lu <1

Proof. To prove a recall that we proved in class that if T is a self-adjoint operator and f
is a continuous and bounded function we have | f (T)| < sup¢eq(ry [f ()] Moreover, we
also saw that if A > 0 then o (A) < [0, +0). As a consequence we get
1 1 1

(A—|—)\id)_1’ < sup < sup —— < —.
H ¢eo(A) ‘C + )“ ¢e[0,+0) C + A A

To prove b we get that for any ¢ € H

by (A + 2id) P A (A + Aid) 1) = (A + Xid) H e, A (A + Xid)"Hy) = 0.

As a consequence we get that

2 2
HA (A+ \id) ™! @z)HH 4 A2 H(A +Aid) ™ szH -
=, (A+Aid) 7" (A2 + 2?) (A + Aid) M)
<, (A+Nid) 7! (A% + 204 + 22) (A + Xid) "y = [[9))3, -

As a consequence we then get HA (A+ Xid)™* ¢HH < |[4], which allows us to conclude

that HA (A+ Aid)*lH <1.
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10 Exercise Sheet 10

10.1 Exercise 1 - The generator of the translation is the momentum

Let H := L? (R) and P := —id, the momentum operator defined on the domain D (P) :=
H! (R) as Py (z) = %w( ) Consider for any A € R the bounded operator T} defined
for any ¢ € H as Thyp (x) = (x — ).

Prove that {T)},cp is a strongly continuous one-parameter unitary group and that

Ty = e = o, (63)
Proof. By definition it follows that if A = 0 then for any ¥ € H we get Toy (z) = 9 (x)
and therefore Ty = id. On the other hand, let A, u € R; then for any ¢ € H we get

DT (x) =Ty (x — A) = (2 — X — p) = Thgp (2). Consider now A € R, ¢, ¢ € H; to
prove that T) is a unitary operator we compute T} to get

W, Ty = (Top, 0y = fR¢ (@ N (z) do = fR @ (@ + ) de = b, Toxp),

and as a consequence Ty = T_; therefore we get Th\TY = Th\T_\ = Ty = id, TYT) =
T T =Ty = id and for any A € R, T} is unitary.

To prove that it is continuous, first consider ¢ € C (R). Then we get that there exists
R > 0 such that for any |\| <, supp ¢ U supp Th¢ < Bgr (0). As a consequence

2 2
| (2) = Tap (2)° < 4[pl7e XBa(0) (2) € L' (R).
We can then apply the dominated convergence theorem to get (with X=A— 1)
. . 2 .
lin T3~ Tuplds = lim [Ty — ol = lim [ Jo (o) ~ Top () d
—H A—0 A—0JR

J lim | () — The ()|* dz = 0.
R X—0

Let now € > 0 and for any ¢ € H let ¢ € C¥ (R) such that |1y — ¢|7. < e. We then get
)l\l_rflll HTA@Z’ - T/ﬂpHm < )\h_I)IL [HT/\¢ - T/\QOHL2 + HT)\SO - TM‘PHL2 + HT/ﬂl’ - TM@HL2]

= }1_{1; (21 — ¢l 2 + | Toe — Tuel 2] = 219 — @l 2 < 2.

Sending ¢ to zero we get the conclusion.

Consider now A the infinitesimal generator of {T)\}, . Suppose 9 € H; recall that if F
represent the Fourier transform, we get

FT)ﬂb —zkm I )\) dr — —'Lk m+)\ ( )dl‘ _ e—i)\qu; (k‘) )

=k K
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Suppose now that 1) € H' (R); then we get for any A

(B - S,

Given that FPi (k) = ki (k), we get

T, —id 2 —i\k 1 . 12 —iXk _q 2
A Ep—iPy| = | — ik =J S k| (k)P dk
) , ) S
. e—ixk_1 |2 2 N PN L
Given that f‘ < |k|%, and |k| ’¢ (k:)‘ € L' (R), we can conclude
Ty — i 2 —ik _ 2
im | 2=y ipyl = J lim | — k| | (k))>dk = 0.
A—0 9 R A—0

So clearly H' (R) € D (A) and A is an extension of P. Now, given that as a consequence
we have that P* is an extension of A* and that both A and P are self-adjoint, we get
that A = P; therefore by Stone theorem e’ = ¢ = Ty,

O

10.2 Exercise 2 - Condition for self-adjointness (complement to the class)

Let H be an Hilbert space, A a symmetric operator and p > 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.

b Ran (A +ipid) = Ran (A —ipid) = H.

Proof. In class we proved that if A is symmetric, A = A* if and only if Ran (A +iid) = H.
Now, A is symmetric if and only if iA is, and given that A + ipid = p (%A + iid),

Ran (A + ipid) = Ran (iA + iid), the result follows from the result proven in class.

10.3 Exercise 3 - Unitary operators as exponentials

Let ‘H be an Hilbert space. Let U € B (H). Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U = e'4.

Proof. Recall that from functional calculus for self-adjoint operators we have f(A)* =
f(A). Then, given that e* = e~ we get (eiA)* — e As a consequence we get
et (eiA)* = ¢demid = id = eMeid = (eiA)* e, and therefore U = ¢ is a unitary
operator.
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Suppose now U is unitary. Then we get o (U) < Bj (0) because |[U| = 1. On the other
hand we get that if A € By (0), then U — \id = U (id —A\U*) = (id —AU*) U, and given
that |[AU*| = |A| <1 and U is unitary, then U —\id is invertible and A ¢ o (U). Therefore
o(U) < S; (where S; = {¢p e H| |[¢| = 1}).

Now, the map z' is bounded from o (U) — C for any ¢t € R. Define then U (t) := U?,
defined through the functional calculus for normal operators. By construction we have that
U (t) is a strongly continuous one-parameter unitary group, so let A be the self-adjoint

infinitesimal generator. As a consequence of Stone theorem, we get that U (t) = ¢4, and
therefore, U = U (1) = .
O
10.4 Exercise 4 - Bogoliubov diagonalization - part I
Let H be an Hilbert space and A, A_ € B(H) such that
[As, A*] id, (64)
A-‘ra [A+7 ] (65)
Let moreover 7, ( € R, with n > { > 0. Define
H:=n(A3 AL + A*A_) + ( (AT A* + ALAL). (66)
a Prove that H is self-adjoint.
b Prove that there exist operators C'y and numbers «, 5 € R such that
[Cy ;] =id, (67)
(€4, -] = [Ch,C*] =0, (68)
H = (C* Cy+C*C) +B. (69)
Hint: Define
Cyi=7+A4 +§£ AT (70)

for some v¢, &+ € R. Use (67) and (68) to deduce that vy = v—, &+ = &— and that
— &2 = 1. Calculate C¥Cy and deduce (69).

Proof. To prove a, given that A4 are bounded operators, first notice that (A;Ai)* =
AL AT = AT A4, On the other hand (AiAi)* = AMAYT = A_Ay = ALA_, and
therefore (A”_;A*_ + A+A_)* = AT A* + AL A_. As a consequence H is self-adjoint.

To prove b , consider Cy defined as (70). Using (67) we get

+,C%] = [v2As + €+ AL v AL + €4 AL ]
S (A AT] ¢ €[4, 45] = (2 - €2)id.
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Now, given that the function sinh is bijective, let 8+ € R such that £+ = sinh (4 ). Then
73 =1+ &2 =1+ sinh? (A1) = cosh (A1 ). Using (68) we then get
0=[Cy,C ] = [y3 Ay + &4 AT v A+ € AT
=y [Ap, AL+ &y [AZ, AL ] = (146 —&4v-)id
= (cosh (64)sinh (f_) — cosh (6_) sinh (A, ))id = sinh (_ — 0 )id.

From the fact that sinh™! (0) = 0, we get that #, = #_ = 0. We then got that Cy =
cosh (0) A1 + sinh (6) A%, and we now consider C%C4:
C3Cy = (cosh (0) Ay + sinh (0) A%)™ (cosh (9) A1 + sinh () A%)
= (cosh (0) A% + sinh () A5) (cosh () A+ + sinh (9) A%)
= cosh? (§) AL Ay + sinh? () A; A% + sinh (0) cosh (0) (A% A* + AL A)
= cosh? (0) AL Ay + sinh? () A% A+ + sinh® (9) [Ag, A% |
+ sinh () cosh (0) (A% A* + AL A_)
= cosh? (0) A% Ay + sinh? (0) AL A4
+ sinh (0) cosh (9) (A% A* + AL A_) + sinh? (0) .

Using the fact that sinh (26) = 2sinh (#) cosh (f) and cosh (20) = cosh? () + sinh? (26),
as a consequence we get
C*Cy + C*C_ = cosh? (0) A* A, + sinh? (9) A* A_
+ sinh (0) cosh (9) (A% A* + AL A_) + sinh? (0)
+ cosh? (0) A* A_ + sinh? (9) A* A,
+ sinh () cosh (0) (A% A* + AL A_) + sinh? (0)
= cosh (26) (A% A4 + A* A_) + sinh (20) (AT A* + AL A_)
+ 2sinh? (0).

Now notice that ) )
/A T N S B
/n? — (2 n2 — (2 -

As a consequence, there is 6 such that cosh (20) = \/;7;{2 and sinh (20) = \/%C?’ and
U n?—

as a consequence
= /n? = (?[cosh (20) (A% Ay + A* A_) +sinh (26) (AT A* + AL AL)]
=12 = [CECy + C*C_ — 2sinh? (0)],

so a = 4/n? — (2. Now, we have

—2+/n? — (?sinh® (0) = /1% — (2 (1 — cosh (20)) = \/n? — (1 - ﬁ)
<~2

=P -C-n=-——.
n+/n?+ ¢
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With « as above and 8 = /1% — (2 — 1) we then get

B S
0+ + ¢

H=+/n? = (C*Cy +C*C_) —

—a(CEC, +C*C) +
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11 Exercise Sheet 11

11.1 Exercise 1 - Double Harmonic oscillator

Let H = L? (RQ). Let H be defined as

~ 1
H:= (Az+Ay) + = (902 + y2) — \zy (71)

1
2 2

with D () = CZ (R?).

Prove that if A € (—1,1) then H is essentially self adjoint and study the spectrum of the
closure of H.

Hint: Prove that, with the right change of variables (x,y) — (w, z), H = H,, + H. with
H,, only depending on w and H, only depending on z.

Proof. Consider the change of variables given as z := z +y, w = = — y. If we define
¢ (z,w) := v (552, 25%) we get that
Apth (z,y) = Do ¢ (z +y, 2 = y)] = 02 [(020) (z + y, 2 — y) + (Ouwd) (x +y,2 — y)]
= (A:0) (x+y, 2 —y) +2(0:009) (z + y,2 —y) + (Bwd) (z + y,2 —y)

and analogously

Ay (z,y) = (Awo) (x + y, 7 —y) —2(0:20u00) (x + y, 7 —y) + (Awd) (z +y,7 —y).

Now, it is easy to check that

As a consequence, we get that ¢ € CF (RQ) if and only if ¢ € CF (RQ) and moreover

~ 1—X 1+ A
(o) = |- 0.0+ 1722 o) + [ ) + 20 o).
If we denote now H,, := —A 4+ w?£? as the harmonic oscillator in one dimension with vari-

able ¢, we know that H,, is self adjoint with domain D,, := { FfeL2(R)| €2f, K2fe L? (R)}.

As a consequence, the operator defined as H VIZA/2 ®id +id®H g7y /2 is self-adjoint with
domain” D Vin2 ® D gx /2 Given that this operator corresponds to the closure of H ,
we get that H is essentially self-adjoint.

"Recall that given two vector subspaces Vi, V» of L? (R), we have that the space V4 ® V4 is defined as
the closure in L2 (R2, dxdy) of all possible linear combinations of product of one element of Vi with one
element of V5, i.e.

N
Vi®@Vs = {Zv;(az)vi(yﬂv}e%, v € Va, ‘v’j=17...,N}.
j=1

20



Now, in the exercise session we saw that

o (Hyi=) ®1d+1d®H yii32) = o (Hyimze) + 0 (Hyring):

and in class we saw that® o (H,) = w + 2wN, therefore we can conclude that

~ 1+ X 1—A
J(Hd):{¢ i y +mn+mmn,meN}-

11.2 Exercise 2 - Normal matrices polynomials

Let A be a normal matrix (meaning that AA* = A*A) and p a polynomial in two variables.
Show by example that an eigenvector for p (A, A*) is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p (A, A*) do not correspond to eigenvectors of A, the
spectrum does, in the sense that

o (p(A,A4%) ={p(AA) [ Aea (A)}. (72)

Proof. Consider the matrix A defined as

0 1+
A'_<—1—i 0 >

We can compute explicitly the adjoint matrix A* and we get
0 -1+ .
A* = = jA.
( 1—i 0 ) '

As a consequence we get [A, A*] = i[A, A] = 0 and A is therefore normal. Let now
p(z,y) = zy. We get that p (A, A*) = iA%. Now, another explicit computation gives us

that
oo o (=2 0\ _[(20Y\ ..
p(A,A%) =iA —z( 0 —2i>_<0 2>—21d.

Now, given that p (A, A*) = 2id, both e; := (1,0)" and ey := (0.1)" are eigenvector,
but Ae; = —(1+i)ey and Aey = (1 + i) ey, which shows that this is in fact a counter
example.

O]

8Recall that 0 € N.
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11.3 Exercise 3 - Spectral measure of the laplacian

Let I := [0,1] and consider H = L?(I). Define the operator H := —A with domain®
D (H) := H*(I) n C}. (I). Prove that H is self-adjoint and exhibit its spectral measure
explicitly.

Proof. Given that H is symmetric, we get that D (H) < D (H*). Let now ¢ € D (H*).
Recall that if

Fo) = F0) = | ¥ f (@) do
I
is the Fourier series associated to v. We then have that

F (02) (k) = 2mike) (k)

F(Aat) (k) , = — (2mk)* 1) (k).

Also, we mentioned before the fact that the Fourier series acts as a unitary operator.
Consider now the state 15 defined as

ClearlyAizA € D (H). From the definition of Fourier transform we get that ¥ (k) =
(27k)? ¢ (k) for any |k| < A and 1 (k) = 0 otherwise. Moreover we have

A

[aliagy = Y @7k)*[§ (k)

‘ 2
k=—A

Now, we know that [(Hva,¥)| < C |[¥al 2y, therefore

A
C Al 2y = KHGn, 0 = | D, (27k)* b (k)i (k)
k=—A
A 2
=| > (2rk)* ]wk)] ‘ = Al 2y -
k=—A

This implies that suppey [¥alf2¢) < €, and therefore 1 € H? (I). Now, consider ¢ €
D (H). Integrating by part we get

(o, H¥) = (Hip, ) = L —3%p (0¥ (z) du
= o () [ (1) — 9 (0)] + f 2 (@)ont (2) do

=—dop (1) [¥ (1) =¥ (0)] + ¢ (1) [¥ (1) — 02¢ (0)]
+ L(,O(x) (—(ﬁw (a:)) dx.

9This definition makes sense, because we know that for any function ¢ € H? (I) we have that there is
a function ¢ € C* (I) that coincides almost everywhere with 1. The definition of the domain is then the
set of functions ¢ € H? (I) such that the function v is periodic with derivative which is periodic.
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Considering functions such that ¢(0) = 0, (0) = 0, we get that H*1 (z) = —021 (z). As
a consequence we get that for any function ¢ € D (H)

—0zp (1) [ (1) =¥ (0)] + ¢ (1) [02¢ (1) — 02t (0)] =

as a consequence, ¥ (1) = ¢ (0) and 0,9 (1) = 0,4 (0) and ¢ € D (H) and therefore H is
self-adjoint.

We now get that for any ¢ € H and ¢ € D (H)

o, Hpy = Y. (2rk)* B (k) (k) = (o, Y. (27k)* 4 (k) €™ = (o, )" (27k)* P,

keN keN keN

where Py, is the projector along the function e?7¥*2_ Therefore, given that H = >, (27k)? P,
the spectrum of H is given by o (H) = {4n?k?| k € N}.

We can then write H as

H= ) A[Pﬁﬂﬂ_ﬁ},
Xeo(H) a 2

and therefore the projection-valued measure associated to H is given by

w(E ZA[PerP f}

\eE 2

for any E measurable subset of o (H).

O
11.4 Exercise 4 - Bogoliubov diagonalization - part II
Let H be an Hilbert space and A, A_ € B(H) such that
A, A*] id, (73)
A+a [AJF) A* ] (74)
Let moreover 7, ( € R, with n > ¢ > 0. Define
H:=n(ATA  + A" A )+ C (AT A* + AL A ). (75)

Recall that if § = 3 arctanh (%) a=+/F—C2 B =r/nF—C2—pand C; and C_ are

defined as

Cy := cosh () Ay + sinh () A% (76)
we get
[C’i, C’;] = id, (77)
[C+a C*] = [C+7Ci] =0, (78)
H=a(CiCi+C*C) + . (79)
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a Consider X := A% A* — AL A_. Prove that X is skew-adjoint, meaning that X* =
—X.

b For any ¢ € R consider U (t) := e 'X. Prove that {U ()}, is a strongly continuous
one-parameter unitary group such that

U (t) A+U (—t) = cosh (t) Ay + sinh (t) A% (80)
Hint: Consider for any ¢, p € H the function f: R — R defined as
fr () =, U (8) A+U (=) ). (81)

Prove that f satisfies a closed second order differential equation and deduce (80).

¢ Suppose that there is a complete orthonormal system {¢,}, .y for H such that
A*Aip, = €x¢n, with € € R. Prove that there exist a complete orthonormal
system {1, }, .y for H such that

Hiy = [a(ef +6,) + B8] ¥n. (82)

Proof. To prove a is enough to notice that, given that A+ are bounded and that A¥* = A4,
then X* = (A% A* — A A ) = A A, —A* A% = —

To prove b, define Y := iX; then the operator Y is is firstly bounded because X is,
and moreover is now self adjoint, indeed Y* = (iX)* = —iX* = iX = Y. We can
then construct via functional calculus the operator U (t) := ¢®¥ = e7X as a strongly
continuous one-parameter unitary group. For any ¢ € H we then have, by the Stone
theorem, that

Uit+h)-U(t
lim LN ZUO vty = —xU (1)
h—0 h
Now, consider v, ¢ € H. Define then f (¢) as in (81), we then get that, given that U ()
is a strongly continuous one-parameter unitary group, f is a differentiable function and

its derivative satisfies

fi (t) = 0U (=) ¥, A+ U (—1) )
= <XU(—t) AU (=) o) + U (=t) ¥, A+ XU (=t) )
= —<¢,U(t)X +U (=t) )+, U (8) AL XU (=1) @)
= =, U ) [X, A+] U (=) @)-

Consider now [X, Ay ]; we get
[X,A,] = [A*A* — A A A,] = [A*A* A,] = [A* A ]A* = —A%,

and similarly we get

[X,A_]=-A,
[X, AL ] = —[X* AL] = [X A" = —A% = —A_
[X, A% ] = — [X*, A% ] = [X,A_]* = A% = —A,.
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From the fact that [X, A+] is bounded we also have that f/ is again differentiable and
we get

L (t) = 0U (), ALU (—t) ) = =0, U () [X, AZ]U (—t) o)
= =, U (6) (=A+) U (=t)p) = f (1)

As a consequence we get that f solves the following second order ordinary differential
equation

i=f+
f+(0) =Y, Aryp),
fi(0) =, AZ ).

From the fact that f{ = fi, we get fi (t) = f+ (0)cosh (t) + fL (0)sinh (¢). As a conse-
quence we get that for any ¢, p e H

W, U (t) A+U (=t) 9) = f+ () = f+ (0) cosh (¢) + f4 (0) sinh (¢)
= (¢, Ay ) cosh (t) + (¥, ALp)sinh (1)
= (1, [cosh (t) A+ + sinh (t) A% ] ),

and therefore we obtain (80).

To prove ¢, consider the pair of operators C+ defined as in 76. From point b if we define
U :=U (0) we get that

UA4LU* = cosh () Ay +sinh (0) AT = Cy
UALU* = (UALU*)* = C3.
Using we can then rewrite the Hamiltonian as
H=a(CiCo+C*C)+B=Ula(A1A, + A*A_) + 5] U™
Define now v, := Uwpy,; then on the one hand we have (¢, ¥y = Upp, Upp) =
(on, U Upm) = {pn,¥m) = Onm 50 {U¥n},cy is an orthonormal system. Given that

{©n} ey is also complete and U is bijective, we get that also {¢n}, .y is a complete
orthonormal system. Now we then get

Hpn = U [0 (AT AL + AP AL) + BlU* (Upn) = U [a (ATAL + A A) on] + Bbn
=Ula(e +e;) o] + Bn = [a (6 + ) + B8] vn,

which concludes the proof.

5}



	Exercise Sheet 1
	Exercise 1 - Examples of Fourier transforms
	Exercise 2 - Properties of operator norm and definition of boundedness (complement to the exercise session)
	Exercise 3 - Young Inequality
	Exercise 4 - Fourier transform and  `39`42`"613A``45`47`"603Asinc

	Exercise Sheet 2
	Exercise 1 - Fourier transform and convolution
	Exercise 2 - Unique projector (complement to the class)
	Exercise 3 - Hilbert space basis with Hahn-Banach
	Exercise 4 - Property of the adjoint (bounded operators)

	Exercise Sheet 3
	Exercise 1 - Properties of orthogonal projectors
	Exercise 2 - Derivative of inner product (complement to the class)
	Exercise 3 -  1i[A,B]  is self-adjoint
	Exercise 4 - Properties of the commutator

	Exercise Sheet 4
	Exercise 1 - Two bounded operator cannot commute in a nontrivial manner
	Exercise 2 - Fourier transform of the complex gaussian
	Exercise 3 - Counterexample for the closed graph theorem
	Exercise 4 - Free Schrödinger equation preserves the domain

	Exercise Sheet 5
	Exercise 1 - Well-posedness of standard deviation
	Exercise 2 - Operator norm of multiplication by a sequence
	Exercise 3 - No solutions for too low energy in the potential well (complement to the class)
	Exercise 4 - Odd solutions to the potential well (complement to the class)

	Exercise Sheet 6
	Exercise 1 -  A  preserves a space,  A*  preserves the orthogonal
	Exercise 2 - Inverse of the adjoint of an invertible
	Exercise 3 - Creation, annihilation and number
	Exercise 4 - Operator norm of multiplication for a function

	Exercise Sheet 7
	Exercise 1 - Application of the UBP to the dual space
	Exercise 2 - Projection valued measures
	Exercise 3 -  [A,B]=0[f(A),B]=0 
	Exercise 4 - Norm and spectral radius

	Exercise Sheet 8
	Exercise 1 - Commuting operators and invertibility
	Exercise 2 - An operator with a closed extension is closable
	Exercise 3 - Explicit norm of resolvent operator
	Exercise 4 - The delta is not a closable operator

	Exercise Sheet 9
	Exercise 1 - Hardy inequality
	Exercise 2 - The Coulomb hamiltonian is self-adjoint
	Exercise 3 - The square root is monotonous
	Exercise 4 - Exercise on norm of the resolvent

	Exercise Sheet 10
	Exercise 1 - The generator of the translation is the momentum
	Exercise 2 - Condition for self-adjointness (complement to the class)
	Exercise 3 - Unitary operators as exponentials
	Exercise 4 - Bogoliubov diagonalization - part I

	Exercise Sheet 11
	Exercise 1 - Double Harmonic oscillator
	Exercise 2 - Normal matrices polynomials
	Exercise 3 - Spectral measure of the laplacian
	Exercise 4 - Bogoliubov diagonalization - part II


