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1 Exercise Sheet 1

1.1 Exercise 1 - Examples of Fourier transforms

a Consider the function f P L1 pTq defined as the periodization of

f pxq :“ x p2π ´ xq . (1)

Calculate the Fourier coefficients of f and use them to prove that

`8
ÿ

k“0

1

k2
“
π2

6
. (2)

b Let σ be a positive real number and v, u P Rd. Consider the function gσ,v,u in the
space L2

`

Rd
˘

with d P N defined as

gσ,v,u pxq :“
´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x. (3)

Then prove that pgσ,v,u “ eiv¨ugσ´1,u,´v, i.e.

F
„

´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x



pkq “

ˆ

1

σπ

˙
d
4

e´
1
2σ
|k´u|2´iu¨pk´vq. (4)

Proof. For the proof of a, first consider the coefficients of f ; if k P Zz t0u those are given
as

pf pkq “
1
?

2π

ż 2π

0
x p2π ´ xq e´ikxdx

“
i

?
2πk

”

x p2π ´ xq e´ikx
ı2π

0
´

?
2i

?
πk

ż 2π

0
pπ ´ xq e´ikxdx

“

?
2

?
πk2

”

pπ ´ xq e´ikx
ı2π

0
`

?
2

?
πk2

ż 2π

0
e´ikxdx

“

?
2

?
πk2

„

´πe´2πki ´ π `
i

k

´

e´2πki ´ 1
¯



“ ´

?
8π

k2
.
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On the other hand when k “ 0 we have

pf p0q “
1
?

2π

ż 2π

0
x p2π ´ xq dx “

1
?

2π

„

πx2 ´
1

3
x3

2π

0

“

?
8ππ2

3
.

We then use the fact that f p0q “ 0 to get

0 “ f p0q “
ÿ

kPZ

pf pkq “

?
8ππ2

3
´ 2
?

8π
`8
ÿ

k“0

1

k2

ùñ

`8
ÿ

k“0

1

k2
“
π2

6
,

which concludes the proof of (2).

For the proof of b, recall that for any positive real number α ą 0 we have

ż

Rd
e´α|x|

2

dx “
´π

α

¯
d
2
.

Consider now the function

hσ pxq :“ gσ,0,0 pxq “
´σ

π

¯
d
4
e´

σ
2
|x|2 .

In general we have that
Bxjhσ pxq “ ´σxjhσ pxq .

Consider then the derivative on the j-th component of phσ. Now, given that hσ is an
exponentially decaing continuous function, we can apply Leibniz theorem and integration
by part to get

Bkj
phσ pkq “

1

p2πq
d
2

ż

Rd
hσ pxq Bkj

´

e´ik¨x
¯

dx

“ ´i
1

p2πq
d
2

ż

Rd
xjhσ pxq e

´ik¨xdx

“
i

σ

1

p2πq
d
2

ż

Rd
Bxjhσ pxq e

´ik¨xdx

“ ´
i

σ

1

p2πq
d
2

ż

Rd
hσ pxq Bxje

´ik¨xdx

“ ´
1

σ
kjphσ pkq .

This is a well defined differential equation, with initial datum

phσ p0q “
1

p2πq
d
2

ż

Rd
hσ pxq dx “

ˆ

1

σπ

˙
d
4
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If we now suppose that phσ pkq “ f1 pk1q ¨ . . . ¨ fd pkdq, we get that for any j

f 1j ptq “ ´
1

σ
tfj ptq ,

and therefore, integrating t between 0 and kj we get

´
k2
j

2σ
“ ´

ż kj

0

1

σ
tdt “

ż kj

0

f 1j ptq

fj ptq
dt “ rlog pfj ptqqs

kj
0 “ log

ˆ

fj pkjq

fj p0q

˙

,

and therefore we get

fj pkjq “ fj p0q e
´
k2j
2σ

ñ phσ pkq “
d
ź

j“1

ˆ

fj p0q e
´
k2j
2σ

˙

“ phσ p0q e
´
|k|2

2σ “

ˆ

1

σπ

˙
d
4

e´
|k|2

2σ “ hσ´1 pkq .

Recall now that for any vector r P Rd the operators Tr and Mr are defined as

Trf pxq :“ f px´ rq , Mrf pxq :“ e´ir¨xf pxq , @f P L1
´

Rd
¯

.

Then, we saw before that

FTr “MrF , FMr “ T´rF .

We now get to calculate the transform of gσ,v,u. First notice that gσ,v,u “M´uTvgσ,0,0 “
M´uTvhσ. Notice now that for any f P L2

`

Rd
˘

we get

pTuMvfq pxq “ pMvfq px´ uq “ e´iv¨px´uqf px´ uq “ eiv¨u pMvTufq pxq .

We then have

pgσ,v,u “ FM´uTvhσ “ TuMvhσ´1 “ eiv¨uMvTuhσ´1 “ eiv¨ugσ´1,u,´v,

which concludes the proof.

1.2 Exercise 2 - Properties of operator norm and definition of boundedness
(complement to the exercise session)

Consider V1 and V2 two normed vector spaces over1 F and T : V1 Ñ V2 a linear mapping.
Define }T }V1,V2 as

}T } :“ sup
vPV1, v‰0

}Tv}

}v}
. (5)

1Here and in the following F can be chosen to be either R or C.
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For a generic linear mapping T we have }T } P r0,`8s. Prove that

}T } “ sup
vPV1, }v}V1

“1
}Tv} (6)

“ sup
vPV1, }v}V1

ď1
}Tv} . (7)

Prove moreover that the following are equivalent

a T is continuous.

b T is continuous in 0, meaning that for any sequence tvnunPN Ď V1,

vn Ñ 0 ùñ Txn Ñ 0. (8)

c The quantity }T } is finite, meaning that }T } ă `8.

Proof. To prove (6) we get

}T } “ sup
vPV1, v‰0

}Tv}

}v}
“ sup

vPV1, v‰0

›

›

›

›

T

ˆ

v

}v}

˙
›

›

›

›

“ sup
vPV1, }v}“1

}Tv} .

To prove (7) first notice that given that the unit sphere is a subset of the corresponding
unit ball we have

sup
vPV1, }v}“1

}Tv} ď sup
vPV1, }v}ď1

}Tv} .

On the other hand, suppose that v P V1 with }v} ď 1, then

sup
vPV1, }v}ď1

}Tv} ď sup
vPV1, }v}ď1

}T } }v} “ }T } ,

which concludes the proof of the first part of the exercise.

Next notice that a implies b trivially.

To prove that b implies c, we have that if T is continuous, the preimage of any open
set is open. In particular, consider2 T´1 pB1 p0qq. Given that 0 P T´1 pB1 p0qq and T is
continuous, there exists a positive real number R such that BR p0q Ď T´1 pB1 p0qq, or
equivalently, by linearity of T , that T pB1 p0qq Ď BR´1 p0q. This can be also written as

}v} ď 1 ùñ }Tv} ď
1

R

and implies in particular that

}T } “ sup
vPV1, }v}ď1

}Tv} ď
1

R
,

2Recall that Br pvq denote the ball of radius r around v.
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which implies c.

To prove that c implies a, consider a sequence tvnunPN Ď V1 such that vn Ñ v in V1. Then
we have

}Tvn ´ Tv} “ }T pvn ´ vq} ď }T } }vn ´ v} Ñ 0,

completing the proof of the exercise.

1.3 Exercise 3 - Young Inequality

Consider p, q, r P r1,`8s such that

1

q
`

1

r
“ 1`

1

p
. (9)

Let f P Lq
`

Rd
˘

, g P Lr
`

Rd
˘

; prove that

}f ˚ g}p ď }f}q }g}r . (10)

Hint: Consider the functions α, β, γ defined as

α px,yq :“ |f pyq|q |g px´ yq|r , (11)

β pyq :“ |f pyq|q , (12)

γ px,yq :“ |g px´ yq|r , (13)

notice that

|f ˚ g pxq| ď

ż

Rd
α px,yq

1
p β pyq

p´q
pq γ px,yq

p´r
pr dy (14)

and that
1

p
`
p´ q

pq
`
p´ r

pr
“ 1 (15)

to apply Hölder inequality.

Proof. Consider α, β and γ as in the Hint. From basic algebraic properties of the Hölder
conjugate exponents we get that

α px,yqβ pyq γ px,yq “ |f pyq g px´ yq| .

Given that
1

p
`
p´ q

pq
`
p´ r

pr
“

1

q
`

1

r
´

1

p
“ 1,

applying the previous equality to (10) and using Hölder inequality we get

|f ˚ g pxq| ď

ż

Rd
α px,yq

1
p β pyq

p´q
pq γ px,yq

p´r
pr dy

ď

›

›

›
α px, ¨q

1
p

›

›

›

p

›

›

›
β
p´q
pq

›

›

›

pq
p´q

›

›

›
γ px, ¨q

p´r
pr

›

›

›

pr
p´r

“ }α px, ¨q}
1
p

1 }f}
p´q
p

q }g}
p´r
p

r .
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Now expanding the norm of α we get that

}α}1 “

ż

R2d

|f pyq|q |g px´ yq|r dxdy

“ }f}qq }g}
r
r .

So now we get

}f ˚ g}p “

„
ż

Rd

„
ż

Rd
f pyq g px´ yq dx

p

dy


1
p

ď }f}
p´q
p

q }g}
p´r
p

r

„
ż

Rd
}α px, ¨q}1 dy


1
p

“ }f}
p´q
p

q }g}
p´r
p

r }g}
r
p
r }f}

q
p “ }f}q }g}r ,

which concludes our proof.

1.4 Exercise 4 - Fourier transform and sinc

a Prove that there exists a positive real number C such that we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ż b

a

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

ď C. (16)

Hint: Consider the function

F ptq :“

ż η

0
e´tx

sinx

x
dx. (17)

Deduce a bound on F 1ptq uniform in η. Apply the fundamental theorem of calculus
for F p0q to conclude.

b Consider an odd function f P L1 pRq. Prove that for any such function we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

pf pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

p2πq
d
2

}f}1 . (18)

c Let g pkq be a continuous odd function on the line such that is equal to 1{ log k for
any k ě 2. Prove that there cannot be an L1 pRq function whose Fourier transform
is g.

Proof. We first prove a; given that the function sinc is even, it is enough to bound the
following quantity:

ˇ

ˇ

ˇ

ˇ

ż η

0

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

,

with η a positive real number.

Consider now the function F ptq defined as

F ptq :“

ż η

0
e´tx

sinx

x
dx.
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Then F ptq is well defined and continuous for any real number t and we have that F p0q
is our initial quantity and F ptq Ñ 0 as tÑ `8. Moreover the derivative of F gives

F 1 ptq “

ż η

0
e´tx sinx dx “ ´Im

ˆ
ż η

0
e´pt`iqxdx

˙

“
1

1` t2
`

1´ te´ηt sin η ´ e´ηt cos η
˘

.

Using now the fundamental theorem of calculus we get

F p0q “ F pT q `

ż 0

T
F 1 ptq dt

for any positive T and hence, taking the limit T Ñ `8

F p0q “ lim
TÑ`8

F p0q

“ lim
TÑ`8

„

F pT q ´

ż T

0
F 1 ptq dt



“ ´

ż `8

0
F 1 ptq dt

“

ż `8

0

1

1` t2
`

te´ηt sin η ` e´ηt cos η ´ 1
˘

dt.

For any positive real number η we get that

sup
tą0

ˇ

ˇte´ηt sin η
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

sin η

η

ˇ

ˇ

ˇ

ˇ

sup
tą0

te´t “

ˇ

ˇ

ˇ

ˇ

sin η

ηe

ˇ

ˇ

ˇ

ˇ

ď e´1

sup
tą0

ˇ

ˇe´ηt cos η ´ 1
ˇ

ˇ “ sup
tą0

`

1´ e´t cos η
˘

“ 1

and therefore we can bound |F p0q| as
ˇ

ˇ

ˇ

ˇ

ż η

0
e´tx

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

“ |F p0q| ď
1` e

e

ż `8

0

1

1` t2
dt

“
π p1` eq

2e
.

Next, to prove b consider f an odd function. Then we have

f pxq “ ´f p´xq ùñ f pxq “
1

2
pf pxq ´ f p´xqq .

This implies that if we consider the Fourier transform of f we get

pf pkq “
1

2 p2πq
d
2

ż

R
rf pxq ´ f p´xqs e´ikxdx

“
1

2 p2πq
d
2

ż

R
f pxq

”

e´ikx ´ eikx
ı

dx

“
i

p2πq
d
2

ż

R
f pxq sin pkxq dx

“
2i

p2πq
d
2

ż `8

0
f pxq sin pkxq dx.

9



We substitute this in (18) to get

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

pf pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

“
2

p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ż b

a

ż `8

0
f pxq

sin pkxq

k
dxdk

ˇ

ˇ

ˇ

ˇ

ď
2

p2πq
d
2

ż `8

0
|f pxq|

ż b

a

ˇ

ˇ

ˇ

ˇ

sin pkxq

k

ˇ

ˇ

ˇ

ˇ

dkdx

“
2

p2πq
d
2

ż `8

0
|f pxq|

ż xb

xa

ˇ

ˇ

ˇ

ˇ

sin k

k

ˇ

ˇ

ˇ

ˇ

dkdx

ď
2Ξ

p2πq
d
2

ż `8

0
|f pxq| dx “

Ξ

p2πq
d
2

}f}1

where in the last inequality we used (16). This concludes the proof of b.

To prove c now, suppose g “ ph. Then on one hand from (18) for any positive real number
R ą 2 we would have

ˇ

ˇ

ˇ

ˇ

ż R

2

g pkq

k
dk

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

2

ph pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Ξ

p2πq
d
2

}h}1 .

On the other hand, we get that

ˇ

ˇ

ˇ

ˇ

ż R

2

g pkq

k
dk

ˇ

ˇ

ˇ

ˇ

“

ż R

2

1

k log k
dk “

ż logR

log 2

1

z
dz “ log

logR

log 2
,

where in the second equality we used the change of variables z “ log k. Now the last term
goes to infinity as R goes to infinity, but this is absurd given that we proved above that
it should be bounded uniformly in R. Therefore such an h does not exists and the proof
is complete.
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2 Exercise Sheet 2

2.1 Exercise 1 - Fourier transform and convolution

Let f, g P S
`

Rd
˘

. Recall that in class we proved

zf ˚ g “ p2πq
d
2 pfpg. (19)

Prove that
pf ˚ pg “ p2πq

d
2 xfg. (20)

Hint: Consider the equivalent statement of (19) for the inverse of the Fourier transform

and apply it to xfg.

Proof. Recall that the inverse Fourier transform is such that qf pxq “ pf p´xq. We then use
(19) to get

~f ˚ g pxq “ zf ˚ g p´xq “ p2πq
d
2 pf p´xq pg p´xq “ p2πq

d
2 qf pxq qg pxq .

To prove (20), consider f, g P S
`

Rd
˘

. Then we know that

q

pf “ f, q

pg “ g.

Given that fg P S
`

Rd
˘

, using the formula we deduced for the inverse Fourier transform,
we can get

xfg “
x

q

pfqpg“ p2πq´
d
2

z

~

pf ˚ pg“ p2πq´
d
2 pf ˚ pg.

2.2 Exercise 2 - Unique projector (complement to the class)

Let H be an Hilbert space and V a closed linear subspace of H.

a In class we proved that for any f P H there exists an element gf P V such that

}f ´ gf } “ min
hPV

}f ´ h} . (21)

Prove that gf is the unique element of V that satisfies the minimum.

b In class we proved that gf is such that f ´ gf P V
K. Prove that there is no other

element h P V such that f ´ h P V K.

11



Proof. Recall the parallelogram law; for any f, g P H we have

}f ` g}2 ` }f ´ g}2 “ 2 }f}2 ` 2 }g}2 .

To prove a, consider g1 P such that

›

›f ´ g1
›

› “ min
hPV

}f ´ h} .

This implies in particular that }f ´ g1} “ }f ´ gf }. By parallelogram law we deduce that

›

›gf ´ g
1
›

›

2
“

›

›

`

f ´ g1
˘

´ pf ´ gf q
›

›

2

“ 2
›

›f ´ g1
›

›

2
` 2 }f ´ gf }

2
´
›

›

`

f ´ g1
˘

` pf ´ gf q
›

›

2

“ 4 }f ´ gf }
2
´
›

›2f ´
`

g1 ` gf
˘›

›

2
“ 4 }f ´ gf }

2
´ 4

›

›

›

›

f ´
1

2

`

g1 ` gf
˘

›

›

›

›

2

.

Given that V is a vector space, we get that 1
2 pg

1 ` gf q P V , and therefore

›

›gf ´ g
1
›

›

2
ď 4 }f ´ gf }

2
´ 4 inf

hPV
}f ´ h}2 “ 0

and therefore g1 “ gf .

To prove b suppose that g1 P V is such that f ´ g1 P V K. Then by definition of V K, for
any h P V we get

xh, gf ´ g
1y “ xh, f ´ g1y ´ xh, f ´ gf y “ 0,

where the last equality comes from the fact that both f ´ gf and f ´ g1 are in V K. We
therefore have that gf ´ g

1 P V K. At the same time, gf ´ g
1 P V , and this implies g1 “ gf .

2.3 Exercise 3 - Hilbert space basis with Hahn-Banach

Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e.
is dense.

For the second part prove and use the following fact: if f is an element of H and S is a
basis for H, there exists a sequence of elements tenunPN Ď S such that f P spanK tenunPN.

Proof. To prove the first part, call A the set of all orthonormal systems in H, i.e.

A :“
 

S Ď H : xψ,ψ1y “ δψ,ψ1 @ψ,ψ
1 P S

(

,

where δψ,ψ1 is 1 if ψ “ ψ1 and 0 otherwise.

12



Consider then the set A with the partial order given by the inclusion. To apply Zorn’s
Lemma consider B an inductive ordered subset of A. Consider moreover

SB :“
ď

SPB
S.

We want to prove that this is an upper bound for B.

First we prove that SB P A. Given that H is closed with respect to unions, SB Ď H. Let
now ψ, ψ1 P SB; then there exist two orthonormal systems S, S1 such that ψ P S P B
and ψ1 P S1 P B; given that B is ordered, either S Ď S1 or S1 Ď S. Suppose S Ď S1; then
ψ,ψ1 P S1 and we get that xψ,ψ1y “ δψ,ψ1 , and therefore SB P A. Given that for any S P B
we have S Ď SB, this is clearly an upper bound for B.

We can now apply Zorn’s Lemma to deduce the existence of a maximal element of A.
What is left to prove is that this maximal element is a basis. Call S the maximal element;
by definition this is an orthonormal system. We prove that it is dense. Suppose it is not;
then3 V :“ spanKtSu is a well defined closed vector space such that HzV ‰ ∅ and V K

is nonempty. Let now φ P V K such that }φ} “ 1 and let Sφ :“ tφu Y S. Clearly Sφ Ď H;
consider ψ, ψ1 P Sφ; if ψ ‰ φ ‰ ψ1 from the fact that S is an orthonormal system
we already know that xψ,ψ1y “ δψ,ψ1 . Suppose now ψ P S; given that φ P V K we get

xψ, φy “ 0. Given that xφ, φy “ }φ}2 “ 1 we deduce that Sψ is an orthonormal system.
But now Sψ Ě S and Sψ ‰ S, which contradicts the maximality of S. Therefore S is a
basis for H.

To prove the second part, we first prove the fact in the hint. Indeed, f P H implies that
there exists a sequence tfnunPN such that fn Ñ f and

fn “

Npnq
ÿ

j“1

aj,nej,n

for some N pnq P N, taj,nuj,nPN Ď K and tej,nuj,nPN Ď S. Given that the latter is a
countable sequence in S this proves the fact.

Now, we use this fact to prove our Exercise; suppose that H is separable; therefore, there
exists D a dense subset of H which is countable, i.e., D “ tdnunPN. But for every n P N, dn
is in the span of Sn a countable subset of S; we then get the following chain of inequalities:

H “ D “ tdnunPN Ď
ď

nPN
Sn Ď S “ H,

and the inequalities are in fact equalities.

From this we get that
Ť

nPN Sn is dense in H and given that
Ť

nPN Sn Ă S, this is also an
orthonormal system, therefore is a basis. Moreover, it is union of countable sets, so it is
also countable, and this proves the first implication.

Suppose now that S is a countable basis for H. Recall that Q is dense in R and that Q`iQ
is dense in C. Call then F a countable dense subset of K We have that D :“ spanF tSu is
countable and dense in H.

3We indicate with spanKtAu the set of finite linear combinations of elements in A with coefficients in
K.

13



2.4 Exercise 4 - Property of the adjoint (bounded operators)

Let A, B bounded operators on an Hilbert space H and α, β P C. Prove the following
equalities:

id˚ “ id (22)

pA˚q˚ “ A (23)

pABq˚ “ B˚A˚ (24)

pαA` βBq˚ “ αA˚ ` βB˚. (25)

Moreover, prove that A˚ is bounded and that }A˚} “ }A}.

Proof. For the proof of (22) consider ψ P H. For any φ P H from the definition of the
adjoint we get

xφ, id˚ ψy “ xidφ, ψy “ xφ, ψy ñ xφ, id˚ ψ ´ ψy “ 0,

and by density we can imply that id˚ ψ “ ψ.

For the proof of (23) we get that for any φ, ψ P H

xφ, pA˚q˚ ψy “ xA˚φ, ψy “ xψ,A˚φy “ xAψ, φy “ xφ,Aψy.

Analogously as before we conclude by density that pA˚q˚ “ A.

For the proof of (24) we get that for any φ, ψ P H

xφ, pABq˚ ψy “ xABφ,ψy “ xBφ,A˚ψy “ xφ,B˚A˚ψy.

For the proof of (25) we get that for any φ, ψ P H

xφ, pαA` βBq˚ ψy “ xpαA` βBqφ, ψy “ αxAφ,ψy ` βxBφ,ψy

“ αxφ,A˚ψy ` βxφ,B˚ψy “ xφ,
`

αA˚ ` βB˚
˘

ψy,

and we can conclude again by density.

To see that A˚ is bounded consider ψ P H; then we have

}A˚ψ}2 “ xA˚ψ,A˚ψy “ xψ,AA˚ψy ď }ψ} }AA˚ψ} ď }ψ} }A} }A˚ψ} ,

and therefore we get }A˚ψ} ď }A} }ψ}; as a consequence we get }A˚} ď }A}, and therefore

}A˚} ď }A} “
›

›pA˚q˚
›

› ď }A˚} ,

and hence }A˚} “ }A}.

14



3 Exercise Sheet 3

3.1 Exercise 1 - Properties of orthogonal projectors

Let H be a Hilbert space. Let V any closed subspace of H; recall the definition of V K as

V K :“ tf P H | xg, fy “ 0 @g P V u . (26)

We saw in class that the Hilbert space H can be decomposed as H “ V ‘ V K, meaning
that V XV K “ t0u and that for any non-zero f P H there exists a unique element fV P V
such that f ´fV P V

K. Define PV f :“ fV ; from the uniqueness of fV this is a well defined
linear mapping.

a Prove that P 2
V “ PV “ P ˚V .

b Use a to prove that PV is bounded and if V ‰ t0u then }PV } “ 1.

c Prove that if V1 and V2 are two closed subspaces of H then4

V1 K V2 ðñ PV1PV2 “ 0. (27)

Proof. We first prove that P 2
V “ PV . To prove this is enough to notice that if f P V then

PV f “ f . Indeed, let g :“ f ´ PV f . Then by definition g P V K. On the other hand, both
f and PV f are in V , therefore g P V X V K “ t0u and this implies PV f “ f . Now from
the fact that PV f P V for any f P H we conclude that P 2

V f “ PV f .

To prove that P ˚V “ PV , first notice that we have the trivial identity id “ PV ` pid´PV q.
Moreover, by definition of PV and from the decomposition H “ V ‘ V K we get that
pid´PV q pHq Ď V K. Consider now f, g P H. We then have

xg, P ˚V fy “ xPV g, fy

“ xPV g, PV fy ` xPV g, pid´PV q fy

“ xPV g, PV fy

“ xg, PV fy ´ xpid´PV q g, PV fy

“ xg, PV fy.

From the fact that this is true for every f, g P H we get that P ˚V “ PV .

To prove b for any f P H we get that

}f}2 “ xf, fy

“ xPV f, fy ` xpid´PV q f, fy

“ xPV f, PV fy ` xpid´PV q f, pid´PV q fy

“ }PV f}
2
` }pid´PV q f}

2 .

4We denote with K the condition of two subspaces of an Hilbert space H of being orthogonal, i.e., V1

is orthogonal to V2, or V1 K V2 if and only if for any pf, gq P V1 ˆ V2 we have xf, gy “ 0.

15



From this we can deduce that PV is bounded and that }PV } ď 1. If V is non empty, let
f P V , }f} “ 1; then }PV f} “ }f} “ 1 and this implies that }PV } “ 1.

To prove c first suppose V1 K V2 and f P V2. By definition of PV1 we have that f ´PV1f P
V K1 ; then we get that

PV1f “ f ´ pf ´ PV1fq P V1 X V
K

1 ñ PV1f “ 0.

Consider now f P H; given that PV2f P V2 we can deduce that PV1PV2 “ 0.

Suppose now that PV1PV2 “ 0. Consider now f P V1, g P V2. Then we have

xf, gy “ xPV1f, PV2gy “ xf, PV1PV2gy “ 0.

Given that f and g were generic this implies that V1 K V2.

3.2 Exercise 2 - Derivative of inner product (complement to the class)

Let φ ptq and ψ ptq differentiable functions on the Hilbert space H, meaning that the limit

dφ

dt
ptq :“ lim

hÑ0

φ pt` hq ´ φ ptq

h
(28)

exists in the norm topology of H for each t P R, and similarly for ψ ptq.

Prove that
d

dt
xφ ptq , ψ ptqy “ x

dφ

dt
ptq , ψ ptqy ` xφ ptq ,

dψ

dt
ptqy (29)

Proof. First notice that (28) means that

lim
hÑ0

›

›

›

›

dφ

dt
ptq ´

φ pt` hq ´ φ ptq

h

›

›

›

›

“ 0.

In particular this implies that

lim
hÑ0

}φ pt` hq ´ φ ptq} ď lim
hÑ0

|h|

ˆ
›

›

›

›

dφ

dt
ptq ´

φ pt` hq ´ φ ptq

h

›

›

›

›

`

›

›

›

›

dφ

dt
ptq

›

›

›

›

˙

“ 0,

and therefore φ ptq is also continuous in the norm topology of H, and similarly for ψ ptq.

Consider now (29); we get

d

dt
xφ ptq , ψ ptqy “ lim

hÑ0

xφ pt` hq , ψ pt` hqy ´ xφ ptq , ψ ptqy

h
.
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The term inside the limit can be decomposed as follows:

1

h
pxφ pt` hq , ψ pt` hqy ´ xφ ptq , ψ ptqyq “

“
1

h
pxφ pt` hq ´ φ ptq , ψ pt` hqy ` xφ ptq , ψ pt` hq ´ ψ ptqyq

“ x
φ pt` hq ´ φ ptq

h
, ψ pt` hq ´ ψ ptqy ` x

φ pt` hq ´ φ ptq

h
, ψ ptqy

` xφ ptq ,
ψ pt` hq ´ ψ ptq

h
y.

We now study the limit of these three terms. The first one can be bound completely, so
we can apply Cauchy-Schwarz to get

lim
hÑ0

ˇ

ˇ

ˇ

ˇ

x
φ pt` hq ´ φ ptq

h
, ψ pt` hq ´ ψ ptqy

ˇ

ˇ

ˇ

ˇ

ď lim
hÑ0

›

›

›

›

φ pt` hq ´ φ ptq

h

›

›

›

›

}ψ pt` hq ´ ψ ptq}

“ lim
hÑ0

›

›

›

›

dφ

dt
ptq

›

›

›

›

}ψ pt` hq ´ ψ ptq} “ 0.

For the second term one can proceed as follows. Using the fact that φ ptq is differentiable
and applying Cauchy-Schwarz again we get

lim
hÑ0

ˇ

ˇ

ˇ

ˇ

x
φ pt` hq ´ φ ptq

h
, ψ ptqy ´ x

dφ

dt
ptq , ψ ptqy

ˇ

ˇ

ˇ

ˇ

ď

ď lim
hÑ0

›

›

›

›

φ pt` hq ´ φ ptq

h
´
dφ

dt
ptq

›

›

›

›

}ψ ptq} “ 0.

Proceeding similarly for the third term we get the result.

3.3 Exercise 3 - 1
i~ rA,Bs is self-adjoint

Let H be a Hilbert space. Consider A and B bounded self-adjoint operators on H. Prove
that 1

i~ rA,Bs is self adjoint.

Proof. Recall that in the last exercise sheet we proved that pABq˚ “ B˚A˚ and that
pαAq˚ “ αA˚ for any A, B bounded operators on H and for any α P C. We therefore get

ˆ

1

i~
rA,Bs

˙˚

“ ´
1

i~
rA,Bs˚ “ ´

1

i~
pAB ´BAq˚ “ ´

1

i~
pB˚A˚ ´A˚B˚q

“ ´
1

i~
pBA´ABq “ ´

1

i~
rB,As “

1

i~
rA,Bs .
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3.4 Exercise 4 - Properties of the commutator

Consider a vector space V over C, A, B, C linear bounded operators on V and α P C.

a Prove that rA,B ` αCs “ rA,Bs ` α rA,Cs.

b Prove that rB,As “ ´ rA,Bs.

c Prove that rA,BCs “ rA,BsC `B rA,Cs.

d Prove that rA, rB,Css “ rrA,Bs , Cs ` rB, rA,Css.

Proof. To prove a notice that

rA,B ` αCs “ A pB ` αCq ´ pB ` αCqA “ AB ´BA` αAC ´ αCA

“ rA,Bs ` α rA,Cs .

To prove b one can see that

rB,As “ BA´AB “ ´pAB ´BAq “ ´ rA,Bs .

To prove c we look at the right side to get

rA,BsC `B rA,Cs “ pAB ´BAqC `B pAC ´ CAq

“ ABC ´BAC `BAC ´BCA “ rA,BCs .

To prove d we notice that

rA, rB,Css ` rB, rC,Ass ` rC, rA,Bss “

“ A pBC ´ CBq ´ pBC ´ CBqA

`B pCA´ACq ´ pCA´ACqB

` C pAB ´BAq ´ pAB ´BAqC “ 0.

This implies in particular

rA, rB,Css “ ´ rB, rC,Ass ´ rC, rA,Bss “ rrA,Bs , Cs ` rB, rA,Css .

18



4 Exercise Sheet 4

4.1 Exercise 1 - Two bounded operator cannot commute in a nontrivial manner

Let H be an Hilbert space. Let A and B linear operators on H such that there exists
α P Cz t0u such that

rA,Bs “ α id . (30)

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider }rA,Bns} and find an absurd.

Proof. Assume that both A and B are bounded operators. Consider for any n P N the
commutator between A and Bn. We have

rA,Bns “
“

A,BBn´1
‰

“ rA,BsBn´1 `B
“

A,Bn´1
‰

“ αBn´1 `B
“

A,Bn´1
‰

.

We can then prove by induction that rA,Bns “ nαBn´1; indeed if n “ 1 the statement
is trivially true, and if we assume the statement to be true for n´ 1 we get

rA,Bns “ αBn´1 `B
“

A,Bn´1
‰

“ αBn´1 `B
`

pn´ 1qαBn´2
˘

“ nαBn´1.

Consider now the norm of the commutator; we get

}rA,Bns} “ }ABn ´BnA} ď 2 }A} }Bn}

ď }A} }B}n .

Given that rA,Bs ‰ 0 we can deduce that }A} ‰ 0. We then get that

}Bn} ě
α

2 }A}
n
›

›Bn´1
›

› ě . . . ě

ˆ

α

2 }A}

˙n´1

n! }B} ą 0

and from this we deduce that for any n P N we have Bn ‰ 0. We then get

n |α|
›

›Bn´1
›

› ď 2 }A} }Bn} ď 2 }A} }B}
›

›Bn´1
›

› ùñ n |α| ď }A} }B} .

Given that the last inequality holds for any n this gives us a contradiction.

4.2 Exercise 2 - Fourier transform of the complex gaussian

a Prove that for any α P C such that Re pαq ą 0,

ˆ
ż

R
e´

x2

2αdx

˙2

“

ż

R2

e´
x2`y2

2α dxdy (31)

“ 2πα, (32)
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where the integral over R2 can be evaluated using polar coordinates. Deduce that

ż

R
e´

x2

2αdx “
?

2πα, (33)

where the square root is the one with positive real part.

b For all B ě A ą 0 and α P Cz t0u we have

ż B

A
e´

x2

2αdx “ ´
α

x
e´

x2

2α

ˇ

ˇ

ˇ

ˇ

B

A

´

ż B

A

α

x2
e´

x2

2αdx. (34)

Using this, prove that the integral in (33) is convergent for all nonzero α with
Re pαq ě 0, provided the integral is interpreted as a principle value when not abso-
lutely convergent, where the principal value is defined as

PV

ż

R
f pxq dx :“ lim

RÑ8

ż R

´R
f pxq dx. (35)

c Prove that the result of a is also valid for nonzero values of α with Re pαq “ 0, at
least in the principal value.

Hint: Given η ‰ 0, show that the principal value from A to `8 of exp
”

´ x2

2pγ`iηq

ı

is small for large A, uniformly in γ P r0, 1s.

d Prove that
1

2π
PV

ż

R
eikxe´i

~t
2m

k2dk “

c

m

2πi~t
ei

m
2~tx

2
, (36)

where the square root is the one with real positive part.

Proof. We start by proving point a. Using polar coordinates we get

ˆ
ż

R
e´

x2

2αdx

˙2

“

ż

R2

e´
x2`y2

2α dxdy “ 2π

ż `8

0
e´

ρ2

2α ρdρ “ ´ 2παe´
ρ2

2α

ˇ

ˇ

ˇ

ˇ

`8

0

“ 2πα.

To recover the integral we want is enough to apply the square root, and given that for
real values of α the integral we get is positive, we choose the positive determination of
the square root to get

ż

R
e´

x2

2αdx “
?

2πα.

To prove b we first use (34) to estimate the principal value. Fix A ą 0; then we get

PV

ż

R
e´

x2

2αdx “ lim
RÑ`8

ż R

´R
e´

x2

2αdx “

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

ż R

A
e´

x2

2αdx

“

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

«

´
α

x
e´

x2

2α

ˇ

ˇ

ˇ

ˇ

R

A

´

ż R

A

α

x2
e´

x2

2αdx

ff

“

ż A

´A
e´

x2

2αdx` 2 lim
RÑ`8

„

´
α

R
e´

R2

2α `
α

A
e´

A2

2α ´

ż R

A

α

x2
e´

x2

2αdx



.
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Now using that Re pαq ě 0 we have that

ˇ

ˇ

ˇ

ˇ

e´
R2

2α

ˇ

ˇ

ˇ

ˇ

ď e
´Re

´

R2

2α

¯

ď 1,

ˇ

ˇ

ˇ

ˇ

1

x2
e´

R2

2α

ˇ

ˇ

ˇ

ˇ

P L1 pA,`8q

and applying this to the limit we get that

PV

ż

R
e´

x2

2αdx “

ż A

´A
e´

x2

2αdx`
2α

A
e´

A2

2α ´

ż `8

A

2α

x2
e´

x2

2αdx,

and therefore the integral is convergent for any α with Re pαq ě 0.

To prove c is enough to consider α “ iη with η P Rz t0u. In this case we get

PV

ż

R
e
ix

2

2η dx “ lim
RÑ`8

ż R

´R
e
ix

2

2η dx “ lim
RÑ`8

ż R

´R
lim
γÑ0`

e
´ x2

2pγ`iηqdx

“ lim
RÑ`8

lim
γÑ0`

ż R

´R
e
´ x2

2pγ`iηqdx,

where in the last equality we could bring the limit outside of the integral because the
integrand is uniformly bounded in modulus by 1 which is integrable in r´R,Rs. From the
formula above and from the fact that now Re pγ ` iηq ą 0 we now have that

ż R

´R
e
´ x2

2pγ`iηqdx “
a

2π pγ ` iηq ´ 2

ż `8

R
e
´ x2

2pγ`iηqdx.

Moreover we can assume that γ P r0, 1s and use b to get that

ˇ

ˇ

ˇ

ˇ

ż `8

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“ lim
LÑ`8

ˇ

ˇ

ˇ

ˇ

ż L

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“ lim
LÑ`8

ˇ

ˇ

ˇ

ˇ

´
γ ` iη

L
e
´ L2

2pγ`iηq `
γ ` iη

R
e
´ R2

2pγ`iηq ´

ż L

R

γ ` iη

x2
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

γ ` iη

R
e
´ R2

2pγ`iηq ´

ż `8

R

γ ` iη

x2
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

ď
4

R
|γ ` iη| e

´R2

2
Re

´

1
γ`iη

¯

ď
4
a

1` η2

R
,

and therefore, passing to the limit we get

ˇ

ˇ

ˇ

ˇ

lim
RÑ`8

lim
γÑ0`

ż `8

R
e
´ x2

2pγ`iηqdx

ˇ

ˇ

ˇ

ˇ

ď lim
RÑ`8

lim
γÑ0`

4
a

1` η2

R
“ 0.

As a consequence we get that

PV

ż

R
e
ix

2

2η dx “ lim
RÑ`8

lim
γÑ0`

a

2π pγ ` iηq “
a

2πiη,

which concludes the proof of c.

To prove d we first notice that

~t
2m

k2 ´ kx “
~t
2m

´

k ´
mx

~t

¯2
´
mx2

2~t
.
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Using c we then get

1

2π
PV

ż

R
eikxe´i

~t
2m

k2dk “
ei

m
2~tx

2

2π
PV

ż

R
e´i

~t
2m

k2dk

“

c

m

2πi~t
ei

m
2~tx

2
,

which concludes our proof.

4.3 Exercise 3 - Counterexample for the closed graph theorem

Consider a separable Hilbert space H and a complete orthonormal system for it tϕnunPN.
Assume that ϕ8 cannot be written as a finite linear combination of elements of tϕnunPN.
Let D denote the dense linear subspace of H consisting of all finite linear combinations
of elements of tϕnunPN and of ϕ8. On D define the operator T : D Ñ H defined as

T

˜

α8ϕ8 `
ÿ

nPN
αnϕn

¸

:“ α8ϕ8. (37)

Prove that T is not bounded.

Hint: Use the closed graph theorem.

Proof. Suppose that T is bounded. Given that D is dense in H, we can define rT an
extension of T to H. Consider now the graph of rT ; given that tϕnunPN is a complete
orthonormal system there exists a sequence tβnunPN such that

lim
NÑ`8

N
ÿ

n“0

βnϕn “ ϕ8.

Recall the definition of G
´

rT
¯

:“
!´

ψ, rTψ
¯

| ψ P H
)

Ď HˆH. Given that we have that

T

˜

N
ÿ

n“0

βnϕn

¸

“ 0,

we get that
´

řN
n“0 βnϕn, 0

¯

P G
´

rT
¯

, and as a consequence pϕ8, 0q P G
´

rT
¯

. On the other

hand, by definition of T we get that Tϕ8 “ ϕ8, and therefore that pϕ8, 0q R G
´

rT
¯

. For

this reason we get that G
´

rT
¯

‰ G
´

rT
¯

. On the other hand rT is trivially linear on H, so

we can apply the closed graph theorem to imply that T cannot be bounded.
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4.4 Exercise 4 - Free Schrödinger equation preserves the domain

Recall the definition of H2 pRq as

H2 pRq :“
!

ψ P L2 pRq | k2
pψ P L2 pRq

)

Recall that in class we defined the map that to any initial datum ψ0 P L
2 pRq would

associate ψt :“ rU0 ptqψ0, defined via the Hamiltonian H0 :“ ´ B2

Bx2
with domain D pH0q “

H2 pRq. Indeed if U0 ptqψ0 is defined for any ψ0 P S pRq as the unique solution to

"

i~Bt pU0 ptqψ0q “ H0U0 ptqψ0

U0 ptqψ0|t“0 “ ψ0,
(38)

then rU0 ptq is defined by density on the whole space L2 pRq, and coincides with U0 ptq on
S pRq.

Prove that if ψ0 P D pH0q then ψt P D pH0q.

Proof. We saw in class that rU0 ptq has an explicit form; indeed for any ψ0 P L
2 pRq we get

thet
F
´

rU0 ptqψ0

¯

pkq “ e´i
~t
2m

k2
pψ0 pxq ,

where F indicates the Fourier transform operator

Now, if ψ0 P H
2 pRq, we get by definition that k2ψ0 P L

2 pRq. As a consequence we also

get k2F
´

rU0 ptqψ0

¯

P L2 pRq, and therefore rU0 ptqψ0 P H
2 pRq.
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5 Exercise Sheet 5

5.1 Exercise 1 - Well-posedness of standard deviation

Let ψ be a unit vector in L2 pRq such that xψ, x2ψ P L2 pRq. Prove that

xX2yψ ě pxXyψq
2 , (39)

where as we defined in class, X is the operator given by the multliplication by x and

xAyψ :“ xψ,Aψy. (40)

Hint: Use Jensen inequality.

Proof. Recall that Jensen inequality states that if µ is a probability measure on a mea-
surable space Ω, f is a real valued function and Ξ is a convex function from R to itself,
then we have

Ξ

ˆ
ż

Ω
f pxq dµ pxq

˙

ď

ż

Ω
Ξ ˝ f pxq dµ pxq .

Consider now the space Ω “ R. The measure |ψ pxq|2 dx is a probability measure because
ψ has L2-norm equal to 1. Now, if we consider f pxq “ x and Ξ ptq “ t2 in Jensen inequality
we get

pxXyψq
2
“

ˆ
ż

R
x |ψ pxq|2 dx

˙2

ď

ż

R
x2 |ψ pxq|2 dx “ xX2yψ.

5.2 Exercise 2 - Operator norm of multiplication by a sequence

Let α :“ tαnunPZ be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions h :“ l2 pZq. Consider the operator that to the sequence
x :“ txnunPZ associate the sequence Mαx “ tαnxnunPZ.

Suppose that }α}8 :“ supnPZ |αn| ă `8. Prove that Ma is a well defined linear bounded
operator from h to itself and prove that }Mα} “ }α}8.

Proof. First notice that for any element of the sequence Mαx we get |αnxn| ď }α}8 |xn|.
As a consequence we get

}Mαx}h “

˜

ÿ

nPZ
|αnxn|

2

¸
1
2

ď }α}8

˜

ÿ

nPZ
|xn|

2

¸
1
2

“ }α}8 }x}h .

Therefore Mα is well defined from h to itself and it is trivially linear. From the previous
inequality we also get that }Mα} ď }α}8.
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To prove the equality, first define for any j P Z the element ej :“ tδj,nunPZ P h. We
get that }ej}h “ 1 and that Mαej “ αjej . Now, by definition of sup there is a sequence

tnjujPN such that
ˇ

ˇαnj
ˇ

ˇÑ }α}8 as j Ñ `8, and we then get

}α}8 “ lim
jÑ`8

ˇ

ˇαnj
ˇ

ˇ “ lim
jÑ`8

›

›Mαenj
›

›

h
ď lim

jÑ`8
}Mα}

›

›enj
›

›

h
“ }Mα} ,

concluding the proof.

5.3 Exercise 3 - No solutions for too low energy in the potential well (comple-
ment to the class)

Consider the Hilbert space h :“ L2 pRq. And the operator H define

D pHq :“ H2 pRq “
!

ψ P L2 pRq | k2
pψ P L2 pRq

)

H “ ´
~2

2m

B2

Bx2
` V pXq ,

where the operator pV pXqψq pxq “ V pxqψ pxq, with

V pxq :“

"

´C if |x| ď A,
0 if |x| ą A,

(41)

and with A and C positive constants. Consider E P p´8,´Cs and prove that there is no
nonzero ψE P D pHq such that

HψE “ EψE . (42)

Proof. Suppose there exists E such in the text of the exercise. Given that ψE ‰ 0 we can
assume that }ψE}h “ 1 As a consequence we get

E “ xψE , EψEy “ xψE , HψEy “ xψE ,´
~2

2m

B2

Bx2
ψEy ` xψE , V pXqψEy.

Given that ψE P D pHq we can integrate by part the first term and obtain

xψE ,´
~2

2m

B2

Bx2
ψEy “

~2

2m
x
B

Bx
ψE ,

B

Bx
ψEy “

~2

2m

›

›

›

›

B

Bx
ψE

›

›

›

›

ě 0.

On the other hand we have

xψE , V pXqψEy ě ´ |xψE , V pXqψEy| ě ´ }V }8 }ψE}
2
h “ ´C.

Given that E P p´8,´Cs we get

´C ě E ě xψE ,´
~2

2m

B2

Bx2
ψEy ` xψE , V pXqψEy ě xψE , V pXqψEy ě ´C,

and therefore E “ ´C.
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Now as we saw in class the function ψE needs to satisfy the following equation

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´
~2

2m
ψ2E “ ´CψE if |x| ď A,

´
~2

2m
ψ2E “ pC ` EqψE “ 0 if |x| ą A,

lim
xÑ˘A´

ψE pxq “ lim
xÑ˘A`

ψE pxq ,

lim
xÑ˘A´

ψ1E pxq “ lim
xÑ˘A`

ψ1E pxq .

Suppose now x P p´8,´Aq. Then we get ψE “ c0` c1x. Given that ψE P h “ L2 pRq, we
then get that c0 “ c1 “ 0. Proceeding similarly for x P pA,`8q we get that ψE pxq “ 0
for any |x| ą A.

So ψE solves
#

ψ2E “
2mC

~2
ψE if |x| ď A,

ψE p˘Aq “ ψ1E p˘Aq “ 0.

Now the solution to the differential equation is ψE pxq “ c`e
p
?

2mC{~qx ` c´e
´p
?

2mC{~qx.
From the fact that ψE p´Aq “ ψE pAq we get

pc` ´ c´q sinh

˜?
2mC

~
A

¸

“ 0,

which in particular implies c` “ c´. As a consequence we get

ψE pxq “ 2c` cosh

˜?
2mC

~
x

¸

.

Using the fact that ψE pAq “ 0 we get c` “ 0, implying that the unique eigenfunction
corresponding to E is the zero vector, which is absurd and concludes our proof.

5.4 Exercise 4 - Odd solutions to the potential well (complement to the class)

Let h, H and D pHq as in Exercise 3. In class we saw that for any E P p´C, 0q there is
always at least one nonzero even solution ψE to the problem HψE “ EψE .

Prove that if A
?

2mC~ ď π
2 there are no nonzero odd solutions, and for larger values of

C there is always at least one.

Proof. Proceeding as in class it is easy to see that any odd solution ψE to HψE “ EψE
is such that

ψE pxq “

$

&

%

ce´
?

2m|E|

~ px´Aq if x ą A,

´ce

?
2m|E|

~ px`Aq if x ą A.
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This explicit form of the solution outside the ball |x| ď A gives us boundary conditions
for the problem that the solution needs to solve inside the ball:

$

’

’

’

&

’

’

’

%

´
~2

2m
ψ2E “ pC ` EqψE ,

ψE p˘Aq “ ˘c,

ψ1E p˘Aq “ ´

a

2m |E|

~
c.

Out of convenience, we define, similarly as in class, the constants κ :“ p2mCq {~2 and
ε :“ ´p2mEq {~2. We then have that E P p´C, 0q if and only if ε P p0, κq.

We are then looking for the odd solution to the problem

$

&

%

´ψ2E “ pκ´ εqψE ,
ψE p˘Aq “ ˘c,
ψ1E p˘Aq “ ´

?
εc.

A generic solution for this problem is of the form ψE pxq “ α sin
`?
κ´ εx

˘

`β cos
`?
κ´ εx

˘

,
with α and β to be determined. Given that our function is odd, we have that β “ 0. The
boudnary conditions then gives us the following relations:

"

α sin
`?
κ´ εA

˘

“ c,
α
?
κ´ ε cos

`?
κ´ εA

˘

“ ´
?
εc.

If c “ 0, the first equation tells us that if we do not want the trivial solution,
?
κ´ εA “

ηπ, with η P Z. This implies that cos
`?
κ´ εA

˘

“ ˘1, and applying this to the second
equation we would deduce that κ “ ε, which is not possible. So c ‰ 0 if and only if α ‰ 0.
Suppose then c ‰ 0 (and therefore α ‰ 0). Dividing the second equation by the first one
we then get the following matching condition

?
κ´ ε cot

`?
κ´ εA

˘

“ ´
?
ε.

Now, if
?
κA ď π

2 we get that
?
κ´ εA P

`

0, π2
˘

, and as a consequence the term on the
left of the matching condition is strictly positive. On the other hand the term on the right
is strictly negative, therefore the matching condition cannot be satisfied and there is no
odd solution to the problem.

Consider now
?
κA ą π

2 ; define the interval I :“
`

max
 

0, k ´ π2{A2
(

, k ´ π2{4A2
˘

and
the following mapping:

ξ : I Ñ R
ε ÞÑ

?
ε`

?
κ´ ε cot

`?
κ´ εA

˘

.

If max
 

0, k ´ π2{A2
(

“ 0 then we have that
?
κA ď π and cot

`?
κ´ εA

˘

P p´8, 0q; in
particular

ξ pIq “

˜

´
?
κ
ˇ

ˇcot
`?
κA

˘ˇ

ˇ ,

c

κ´
π2

A2

¸

.
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If max
 

0, k ´ π2{A2
(

“ k ´ π2{A2 then we have that

ξ pIq “

˜

´8,

c

κ´
π2

A2

¸

.

In both cases 0 P ξ pIq and we have that there is a solution to the matching conditions,
which implies the existence of a nontrivial odd solution.
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6 Exercise Sheet 6

6.1 Exercise 1 - A preserves a space, A˚ preserves the orthogonal

Let V be a closed subspace of H Hilbert space. Let A be a linear bounded operator on H
such that A pV q Ď V . Prove that A˚

`

V K
˘

Ď V K.

Proof. Consider ψ P V K and let ϕ P V . We then get

xϕ,A˚ψy “ xAϕ,ψy “ 0,

because Aϕ P V and ψ P V K. Given that ϕ was generic, we get that A˚ψ P V K.

6.2 Exercise 2 - Inverse of the adjoint of an invertible

Let H be an Hilbert space. Let A be a linear bounded operator on H with linear bounded
inverse A´1. Prove that

`

A´1
˘˚
A˚ “ A˚

`

A´1
˘˚
“ id. Deduce that A˚ is invertible and

that pA˚q´1
“

`

A´1
˘˚

.

Proof. Given that A is invertible we get that both A˚ and
`

A´1
˘˚

are well defined linear
bounded operators. Recall that we proved before (see Exercise Sheet number 2) that
pABq˚ “ B˚A˚. We then get id “ id˚ “

`

AA´1
˘˚
“

`

A´1
˘˚
A˚. In a similar way, we also

get id “ id˚ “
`

A´1A
˘˚
“ A˚

`

A´1
˘˚

.

Now, given that
`

A´1
˘˚
A˚ “ A˚

`

A´1
˘˚
“ id then A˚ is invertible and pA˚q´1

“
`

A´1
˘˚

.

6.3 Exercise 3 - Creation, annihilation and number

Consider the Hilbert space H :“ `2 pNq.

a Define the operator A as

pAαqn “ αn`1 @n P N, (43)

for any α “ tαnunPN P H.

Prove that A is a well defined linear bounded operator, find its norm and its spec-
trum.

b Consider A˚ the adjoint of A. Show its explicit action and find its norm and its
spectrum.

c Define B :“ A˚A. Prove that B is a self-adjoint operator, show its explicit action
and find its norm and its spectrum.
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Hint: Recall that if T is a linear bounded operator, the spectrum σ pT q is a closed set,
ρ pT q ” Cz σ pT q the resolvent of T is defined as

ρ pT q :“
!

λ P C| pT ´ λ idq´1 is a well-defined, linear, bounded operator
)

, (44)

and that σ pT q Ď B}T } p0q, where BR p0q :“ tα P H| }α}2 ă Ru.

Proof. To prove a, first consider α “ tαnunPN , β “ tβnunPN P H and λ P C. We get

pA pα` λβqqn “ pα` λβqn`1 “ αn`1 ` λβn`1 “ pAαqn ` λ pAβqn ,

and therefore A is linear. To prove that is bounded consider α P H; we get

}Aα}22 “
ÿ

ně0

|pAαqn|
2
“

ÿ

ně1

|αn|
2
ď }α}22 ,

therefore A is well defined from H to itself and }A} ď 1. Let now ej “ tδj,nunPN; on the
one hand

›

›ej
›

›

2
“ 1, on the other we also get that for any j ą 0 we get

›

›Aej
›

›

2
“ 1,

therefore }A} “ 1.

Given that }A} “ 1 we get that σ pAq Ď B1 p0q. Consider now λ P B1 p0q. If we look for a
solution of Aα “ λα, we get that such α needs to satisfy

αn`1 “ λαn.

It is easy to see that αn :“ λnα0 satisfies the equation, and given that

}α}22 “
ÿ

ně0

|λ|2n |α0|
2
“

|α0|
2

1´ |λ|2

we also get that α P H. This implies that α is an eigenvector for A and as a consequence
B1 p0q Ď σ pAq. Given that the spectrum is always a closed set we get B1 p0q Ď σ pAq “
σ pAq Ď B1 p0q, and hence σ pAq “ B1 p0q.

To prove b, let α, γ P H. We get
ÿ

ně0

γn pA
˚αqn “ xγ,A

˚αy “ xAγ, αy “
ÿ

ně0

pAγqnαn “
ÿ

ně0

γn`1αn “
ÿ

ně1

γnαn´1.

Given that α and γ were arbitrary we get that

pA˚αqn :“ p1´ δn,0qαn´1 ”

"

αn´1 if n ą 0,
0 if n “ 0.

From the definition we easily get that }A˚α}2 “ }α}2, and therefore }A˚} “ 1.

If we now turn to the spectrum, we get that given that }A˚} “ 1, then σ pA˚q Ď B1 p0q.
Consider now λ P B1 p0q and let γ P H. We look for α so that pA˚ ´ λ idqα “ γ. Then we
have

αn´1 ´ λαn “ γn, if n ą 0,

´λα0 “ γ0.
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As a consequence, we can sum up the coefficients to get

n
ÿ

j“1

λj
ˆ

αj ´
1

λ
αj´1

˙

“

n
ÿ

j“1

λjαj ´
n
ÿ

j“1

λj´1αj´1

“

n
ÿ

j“1

λjαj ´
n´1
ÿ

j“0

λjαj “ λnαn ´ α0.

On the other hand, we use the fact that pA˚ ´ λ idqα “ γ to get

αn “ λ´n

˜

n
ÿ

j“1

λj
ˆ

αj ´
1

λ
αj´1

˙

` α0

¸

“ ´λ´pn`1q
n
ÿ

j“0

λjγj .

If |λ| ă 1, it is easy to see that there exist γ P H so that |αn| Ñ `8 as n Ñ `8,
and therefore A˚ ´ λ id does not have an inverse from H to itself. As a consequence
B1 p0q Ď σ pA˚q, and given that the spectrum is closed, we get B1 p0q Ď σ pA˚q Ď B1 p0q,
which implies σ pA˚q “ B1 p0q.

To prove c, a simple computation first gives that pBαqn “ p1´ δn,0qαn. From this it is
easy to see that }B} “ 1. B is also self-adjoint because we get B˚ “ pA˚Aq˚ “ A˚A˚˚ “ B.
Given that Be0 “ 0 and that Bej “ ej for any j ą 0, we also get that t0, 1u Ď B. Given
that B is self-adjoint, σ pBq Ď R. Let now λ P Rz t0, 1u. If we consider the equation
pB ´ λ idqα “ γ, we get that fixed γ P H, α needs to be

p1´ λqαn “ γn, if n ą 0,

´λα0 “ γ0,

and as a consequence we can define

´

pA´ λ idq´1 γ
¯

n
:“

"

1
1´λγn if n ą 0,

´ 1
λγ0 if n “ 0,

and this is a well defined linear bounded operator, implying that λ P ρ pBq. We then
conclude that σ pBq “ t0, 1u.

6.4 Exercise 4 - Operator norm of multiplication for a function

Consider the interval I “ pa, bq Ď R and the Hilbert space H :“ L2 pIq. Consider ϕ P C pIq
a real valued continuous function with }ϕ}8 ă `8. Consider the operator Tϕ defined for
any ψ P H as

Tϕψ pxq :“ ϕ pxqψ pxq . (45)

Prove that Tϕ is a well defined linear bounded operator and prove that σ pTϕq “ ϕ pIq.

Hint: Show first that ϕ pIq Ď σ pTϕq and use the fact that the spectrum is closed to show

that the same is true for the closures. Next, show that
´

σ pTϕq
¯c
Ď ρ pTϕq to conclude.
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Proof. Let y0 P ϕ pIq and let x0 P I such that ϕ px0q “ y0. Consider the sequence given
by

ψn pxq :“

" ?
n |x´ x0| ď

1
2n ,

0 |x´ x0| ą
1

2n .

We then get that }ψn}2 “ 1 and therefore

lim
nÑ`8

}Tϕψn ´ yψn}2
}ψn}2

“ lim
nÑ`8

˜

?
n

ż x0`
1
2n

x0´
1
2n

pϕ pxq ´ yq dx

¸
1
2

“ lim
nÑ`8

1
4
?
n

˜

n

ż x0`
1
2n

x0´
1
2n

ϕ pxq dx´ y

¸
1
2

.

From the mean value theorem for integrals, given that ϕ is a continuous function, we get
that

lim
nÑ`8

n

ż x0`
1
2n

x0´
1
2n

ϕ pxq dx “ ϕ px0q “ y,

and as a consequence

lim
nÑ`8

}Tϕψn ´ yψn}2
}ψn}2

“ 0.

As we saw in class, this implies that y P σ pTϕq; this implies that ϕ pIq Ď σ pTϕq, and given
that the spectrum is closed we get that ϕ pIq Ď σ pTϕq.

On the other hand, let λ R ϕ pIq; then the operator pT ´ λ idq´1 is defined as

pT ´ λ idq´1 ψ pxq “
1

ϕ pxq ´ λ
ψ pxq ,

and its norm is bounded by
›

›

›
pT ´ λ idq´1

›

›

›
ď supxPR |ϕ pxq ´ λ|

´1, which is finite by

hypotheses. As a consequence we get that σ pTϕq “ ϕ pIq.
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7 Exercise Sheet 7

7.1 Exercise 1 - Application of the UBP to the dual space

Let V be a Banach space and E a nonempty subset of V such that for any ξ P V ˚ there
exists a finite constant Cξ such that

sup
xPE

|ξ pxq| ď Cξ. (46)

Prove that E must be bounded.

Hint: Consider the map J : V Ñ V ˚˚ defined as

rJ pxqs pξq :“ ξ pxq @x P V, ξ P V ˚. (47)

Prove that }J pxq}V ˚˚ “ }x} for any x P V . Use the Uniform Boundedness Principle to
show that J pEq is bounded and conclude.

Proof. Consider x P V . Recall that we proved that for any x we have

}x} “ sup
ξPV ˚, }ξ}V ˚“1

|ξ pxq| .

We then get

}J pxq}V ˚˚ “ sup
ξPV ˚, }ξ}V ˚“1

|rJ pxqs pξq| “ sup
ξPV ˚, }ξ}V ˚“1

|ξ pxq| “ }x} .

Consider now the set J pEq Ď V ˚˚. Consider ξ P V ˚; using the hypothesis we then get

sup
xPE

|rJ pxqs pξq| “ sup
xPE

|ξ pxq| ď Cξ.

We can then apply the uniform boundedness principle to get that there exists a constant
C such that

sup
xPE

}J pxq}V ˚˚ ď C.

As a consequence we get
sup
xPE

}x} “ sup
xPE

}J pxq}V ˚˚ ď C,

and therefore E is bounded.

7.2 Exercise 2 - Projection valued measures

Consider pX,Ωq a measurable space (i.e., a set X with a σ-algebra Ω in it), and consider
a projection-valued measure with values in H an Hilbert space. Let E, F P Ω.
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a Prove that if E X F “ H then Ranµ pEq K Ranµ pF q.

b Prove that µ pEqµ pF q is an orthogonal projector and that

Ran pµ pEqµ pF qq “ Ranµ pEq X Ranµ pF q . (48)

Proof. To prove a first recall that from the definition of projection-valued measure we get
that for any E, F P Ω we have µ pE X F q “ µ pEqµ pF q. Therefore if E X F “ H we
have that µ pEqµ pF q “ µ pF qµ pEq “ µ pHq “ 0. Let now ψ P Ranµ pEq, φ P Ranµ pF q.
Given that µ pEq and µ pF q are orthogonal projectors, we get ψ “ µ pEqψ and φµ pF qφ,
and as a consequence

xφ, ψy “ xµ pF qφ, µ pEqψy “ xφ, µ pF q˚ µ pEqψy “ xφ, µ pF qµ pEqψy “ 0,

and therefore Ranµ pEq K Ranµ pF q.

To prove b, first we get that in general for any E, F P Ω we get µ pEqµ pF q “ µ pE X F q,
and given that the latter is an orthogonal projector, also the former is. To prove (48), we
first prove Ď. Indeed we get trivially that Ran pµ pEqµ pF qq Ď Ranµ pEq, and on the other
hand Ran pµ pEqµ pF qq “ Ran pµ pF qµ pEqq Ď Ranµ pF q, therefore it must be included
in the intersection.

On the other hand, to prove Ě let ψ P Ranµ pEqXRanµ pF q. Then we get that µ pEqψ “
ψ “ µ pF qψ. As a consequence we get ψ “ µ pEqψ “ µ pEqµ pF qψ P Ran pµ pEqµ pF qq,
and this concludes the proof.

7.3 Exercise 3 - rA,Bs “ 0ñ rf pAq , Bs “ 0

Let H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B
a bounded operator over H such that rA,Bs “ 0. Consider a bounded complex-valued
measurable function f . Prove that rf pAq , Bs “ 0.

Proof. Notice first that if rA,Bs “ 0 then rAn, Bs “ 0 for any n P N. As a consequence,
if f is a polynomial we also get rf pAq , Bs “ 0. Consider now f a real-valued continuous
function; from Weierstrass theorem we get that there exists a sequence of polynomials
pn that converges uniformly to f as n goes to infinity, and applying the result to the
sequence of polynomials we get that also f pAq commutes with B. Now, any complex-
valued function f can be written as f “ Ref ` iImf , and given that Ref and Imf are
continuous and real-valued the result is also true for complex-valued continuous functions.
Consider now the set F : tf : σ pAq Ñ C| rf pAq , Bsu; so far we proved that any complex-
valued continuous function is in F . Given that F is closed by uniformly bounded pointwise
limit, we get that F “ L8 pσ pAq ;Cq, which concludes the result.
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7.4 Exercise 4 - Norm and spectral radius

Let H be an Hilbert space. Let T be a bounded operator over H. We proved in class that
in general R pT q ď }T }, where

R pT q :“ sup
λPσpT q

|λ| . (49)

Exhibit an explicit operator such that R pT q ă }T }.

Proof. Consider the operator T defined on the Hilbert space H :“ L2 pIq, with I “ p0, 1q
as

Tψ pxq :“

ż 1

0
ψ pxq dx.

T is a well-defined bounded linear operator and we proved in one of the exercise sessions
that the spectrum of T is σ pT q “ t0u, and therefore R pT q “ 0. On the other hand, T ‰ 0
implies }T } ą 0 “ R pT q.
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8 Exercise Sheet 8

8.1 Exercise 1 - Commuting operators and invertibility

a Let H be an Hilbert space. Suppose A,B P B pHq with rA,Bs “ 0 and A not
invertible. Prove that AB is not invertible.

Hint: Prove first that if AB were invertible then A would have both a left and a right
inverse. Then prove that those would need to be equal and conclude.

b Prove that if we do not assume A and B to commute, the result in a is false.

Proof. To prove a, suppose first that AB is invertible; this means that there is an operator
C such that ABC “ id “ CAB. Given that rA,Bs “ 0, we can also write A pBCq “ id “
pCBqA. Now, to prove that BC “ CB, given that A and B commute, we can write
BC “ pCABqBC “ CB pABCq “ CB. Therefore this implies that if AB is invertible
then A is invertible, proving the result.

To prove a is enough to consider a counter example; consider A and A˚ as in Exercise 3
in the Exercise Sheet of the 14.02.2014. We have that rA,A˚s ‰ 0, both A and A˚ are
bounded and not invertible, but AA˚ “ id, which is invertible.

8.2 Exercise 2 - An operator with a closed extension is closable

Let H be an Hilbert space. Let A be an unbounded linear operator on H. Suppose there
exists a closed operator C that extends the operator A. Prove that A is closable.

Proof. Recall that G pT q :“ tpψ, Tψq P HˆH| ψ P D pT qu is the graph of an operator T .
Consider G pAq; we want to prove that it corresponds to a well defined (closed) linear
operator. Define the following operator:

D pBq : “ tψ P | Dϕ P s.t. pψ,ϕq P G pAqu

B : “ C|DpBq .

Given that D pAq Ď D pBq is dense, we get that B is densily defined. Moreover, from the
linearity of C we also get that B is linear.

From the fact that C is an extension of A we get that for any ψ P D pAq, Bψ “ Cψ “ Aψ,
so B is an extension of A. As a consequence, G pAq Ď G pBq.

On the other hand, given that C is a closed extension of A we get that G pAq Ď G pCq “
G pCq, so if pψ,ϕq P G pAq this implies ϕ “ Cψ. On the other hand, if pψ,ϕq P G pAq
then ψ P D pBq and therefore Bψ “ Cψ “ ϕ and pψ,ϕq P G pBq. Therefore we have
G pAq Ď G pBq.

Suppose now that pψ,Bψq P G pBq. Then given that ψ P D pBq there exists an element
ϕ P H such that pψ,ϕq P G pAq; but G pAq Ď G pCq implies ϕ “ Cψ “ Bψ, and therefore
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G pBq Ď G pAq, which together with the inclusion above shows that G pBq “ G pAq and
implies that A is closable.

8.3 Exercise 3 - Explicit norm of resolvent operator

Let H be an Hilbert space. Let A be self-adjoint.

a Suppose λ0 P ρ pAq, where ρ pAq is the resolvent set of A. Prove that
›

›

›
pA´ λ0 idq´1

›

›

›
“

1

d pλ0, σ pAqq
, (50)

where d px, Y q :“ infyPY |x´ y|, with x P C, Y Ď C.

Hint: Think of pA´ λ0 idq´1 as a function of A in the sense of the functional calculus
of A.

b Let λ0 P C and suppose that there exists ε ą 0 and some nonzero ψ P H such that

}Aψ ´ λ0ψ} ă ε }ψ} . (51)

Prove that there exists λ P σ pAq such that |λ´ λ0| ă ε.

Proof. Recall that there exists a projection-valued measure µA such that

A “

ż

σpAq
λdµA pλq ,

f pAq “

ż

σpAq
f pλq dµA pλq .

Let λ0 P ρ pAq; given that the spectrum of A is closed, we have d pλ0, σ pAqq ą 0. The func-
tion f pλq :“ pλ´ λ0q

´1 is then continuous and bounded on σ pAq, with supλPσpAq |f pλq| “

d pλ0, σ pAqq
´1. Now, we know that if g pλq “ λ ´ λ0, on the one hand g pAq “ A ´ λ0 id

and on the other hand g pλq f pλq “ f pλq g pλq “ 1. As a consequence we get that
f pAq “ pA´ λ0 idq´1. To get (50) then we use the functional calculus to get

›

›

›
pA´ λ0 idq´1

›

›

›
“

›

›

›

›

›

ż

σpAq
f pλq dµA pλq

›

›

›

›

›

“ sup
λPσpAq

|f pλq| “
1

d pλ0, σ pAqq
.

To prove b, assume (51); if λ0 P σ pAq, we can take λ “ λ0. Assume now that λ0 P ρ pAq.
We have that

›

›

›
pA´ λ0 idq´1

›

›

›
ě

›

›

›
pA´ λ0 idq´1

pA´ λ0 idqψ
›

›

›

}pA´ λ0 idqψ}
“

}ψ}

}pA´ λ0 idqψ}
ą

1

ε
.

Using then (50) we get

1

ε
ă

›

›

›
pA´ λ0 idq´1

›

›

›
“

1

d pλ0, σ pAqq
,

which concludes the proof.
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8.4 Exercise 4 - The delta is not a closable operator

Let H “ L2 pIq, with I “ r0, 1s. Consider the operator A with domain D pAq “ C pIq and
with action

Aψ pxq “ ψ p0q , @ψ P D pAq . (52)

Prove that A is not closable.

Proof. Consider the graph of A given as G pAq “ tpψ,ψ p0qq | ψ P C pIqu; considering
ψ “ 0, we get that p0, 0q P G pAq.

Moreover, let ψn be a sequence of continuous functions with ψ pIq P r0, 1s, ψ pxq “ 0 for
any x P p1{n, 1s and ψ pxq “ 1 for any x P r0, 1{ p2nqq.

Then given that }ψ} ď 1{n, we get ψn Ñ 0 in H as n Ñ `8; on the other hand, we
have that Aψn pxq “ 1 for any x and for any n, so Aψn Ñ 1 in H as n Ñ `8. As a
consequence, p0, 1q P G pAq, which implies that A is not closable.
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9 Exercise Sheet 9

9.1 Exercise 1 - Hardy inequality

Let k P Z, d P N, k ` d ‰ 0. Let D be defined as

D :“

"

C8c
`

Rd
˘

if k ě 0,
C8c

`

Rdz t0u
˘

if k ď ´1, k ` d ‰ 0.
(53)

Prove that for any ψ P D

ż

Rd
|x|k |ψ pxq|2 dx ď

4

|k ` d|2

ż

Rd
|x|k`2

|∇ψ pxq|2 dx. (54)

Hint: Use the fact that

|x|k “
1

k ` d

d
ÿ

j“1

B

Bxj

´

|x|k xj

¯

(55)

to integrate by part on the left hand side of (54) and then use the Cauchy-Schwartz
inequality.

Remark: Notice that in particular if k “ ´2 (and d ‰ 2) this implies that as operators

1

|x|2
ď ´

4

|d´ 2|
∆. (56)

A generalisation of this formula is called in the literature the Hardy inequality.

Proof. We will use the shorthand notation of div for a divergence of a vector field, meaning
that if F is a vector field on Rd, we define

divF pxq :“
d
ÿ

j“1

B

Bxj
Fj pxq .

With this notation in mind we have that the Green theorem can be written as
ż

Rd
divF pxq g pxq dx “ ´

ż

Rd
F ¨∇g pxq dx,

and we can write |x|k “ pk ` dq´1 div
´

|x|k x
¯

.
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Let ψ P D and consider the left-hand side of (54); we get

ż

Rd
|x|k |ψ pxq|2 dx “

1

k ` d

ż

Rd
div

´

|x|k x
¯

|ψ pxq|2 dx

“ ´
1

k ` d

ż

Rd
|x|k x ¨∇

´

|ψ pxq|2
¯

dx

“ ´
2

k ` d

ż

Rd
|x|k x ¨ Re

´

ψ pxq∇ψ pxq
¯

dx

ď
2

|k ` d|

ż

Rd
|x|k`1

|ψ pxq| |∇ψ pxq| dx

ď
2

|k ` d|

ˆ
ż

Rd
|x|2pk`1´ηq

|ψ pxq|2 dx

˙
1
2
ˆ
ż

Rd
|x|2η |∇ψ pxq| dx

˙
1
2

.

If we choose η “ k`2
2 we get

ż

Rd
|x|k |ψ pxq|2 dx ď

4

|k ` d|2

ż

Rd
|x|k`2

|∇ψ pxq| dx.

9.2 Exercise 2 - The Coulomb hamiltonian is self-adjoint

a Let H :“ L2
`

R3
˘

. Define (as in class) the operator H0 with5

D pH0q :“ H2
`

R3
˘

”

!

ψ P H| |k|2 pψ pkq P L2
`

R3
˘

)

, (57)

H0ψ “ ´∆ψ “
´

|k|2 pψ pkq
¯_

, @ψ P D pH0q . (58)

Prove that H0 is closed.

b Let D pHq :“ D pH0q. Define H :“ H0`
1
|x| . Prove that H is well-defined and closed.

(Assume, if necessary, to know that there exists a positive constant C such that for
any ψ P H2

`

R3
˘

it holds }ψ}L8 ď C }ψ}H2).

Hint: Use the fact that H2
`

R3
˘

Ď L8
`

R3
˘

to prove that is well-defined. To prove
the closure, use (54) from Exercise 1 to show and subsequently use that @ε ą 0,
@ψ P D pHq

›

›

›

›

1

|x|
ψ

›

›

›

›

L2

ď
2

ε
}ψ}L2 ` ε }H0ψ}L2 (59)

to get that

}H0ψ}L2 ď
2

ε p1´ εq
}ψ}L2 `

1

1´ ε
}Hψ}L2 . (60)

c Prove that H is symmetric.

5Recall that we proved in the exercise session that if }ψ}H2 :“
›

›

›

`

1` |k|2
˘

pψ
›

›

›

L2
, then H2

`

R3
˘

is closed

with respect to }¨}H2 .
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d Prove that H is self-adjoint.

Hint: Use the fact that 1
|x| is a self-adjoint operator and apply the Kato-Rellich

theorem.

Proof. Recall that we proved in the exercise session that H2
`

R3
˘

is closed with respect
to }¨}H2 . To prove a, then, consider a sequence tψnunPN Ď D pH0q such that ψn Ñ ψ and
H0ψn Ñ φ in H. As a consequence we get that tψnunPN is a Cauchy sequence with respect
to }¨}H2 and therefore ψ P H2

`

R3
˘

“ D pH0q and H0ψ “ ϕ, and hence H0 is closed.

To prove b we first prove that H is well defined. Given that ψ P H2
`

R3
˘

Ď L8
`

R3
˘

, we
get that

›

›

›

›

1

|x|
ψ

›

›

›

›

2

L2

“

ż

R3

1

|x|2
|ψ pxq|2 dx ď }ψ}L8

ż

B1p0q

1

|x|2
dx`

ż

R3zB1p0q
|ψ pxq|2 dx

ď 4π }ψ}L8 ` }ψ}L2 ď p4πC ` 1q }ψ}H2 .

We then use Hardy inequality and the fact that for any η ą 0 we have |k|2 ď 1{η`η{4 |k|4,
to obtain for any ψ P C8c

`

R3zt0u
˘

that

›

›

›

›

1

|x|
ψ

›

›

›

›

2

L2

ď 4 }∇ψ}2L2 “ 4

ż

R3

|k|2
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
dx ď

4

η
}ψ}2L2 ` η }H0ψ}

2
L2

ď

ˆ

2
?
η
}ψ}L2 `

?
η }H0ψ}L2

˙2

.

Calling η “ ε2 we obtain (59). As a consequence we get for any ψ P C8c
`

R3zt0u
˘

}H0ψ}L2 ď }Hψ}L2 `

›

›

›

›

1

|x|
ψ

›

›

›

›

L2

ď }Hψ}L2 `
2

ε
}ψ}L2 ` ε }H0}L2 .

Choosing ε ă 1 and collecting the identical terms on the left we obtain (60).

Suppose tψnunPN Ď D pHq and that ψn Ñ ψ and Hψn Ñ ϕ in H; then the sequences
tψnunPN and tHψNunPN are Cauchy sequences and using (60) we get that also tH0ψnunPN
is. From a we then get that ψ P D pH0q “ D pHq and that H0ψn Ñ H0ψ. Moreover we
get that

lim
nÑ`8

›

›

›

›

1

|x|
pψn ´ ψq

›

›

›

›

L2

ď lim
nÑ`8

p4πC ` 1q }ψn ´ ψ}H2

“ lim
nÑ`8

p4πC ` 1q

b

}ψn ´ ψ}
2
L2 ` }H0 pψn ´ ψq}

2
L2 “ 0,

and as a consequence Hψn Ñ Hψ, so H is closed.

To prove c, consider ψ, ϕ P D pHq “ H2
`

R3
˘

; then we get

xψ,H˚ϕy “ xHψ,ϕy “ x´∆ψ,ϕy ` x
1

|x|
ψ,ϕy.

We already showed in class that ´∆ is symmetric, so we get that

xψ,H˚ϕy “ xψ,´∆ϕy ` xψ,
1

|x|
ϕy “ xψ,Hϕy,
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and therefore H is symmetric.

To prove d notice that if we define the operator V as the operator given by

D pV q :“

"

ψ P H| 1

|x|
ψ pxq P H

*

V ψ pxq :“
1

|x|
ψ pxq ,

this is a well defined self-adjoint operator. Indeed it is trivially symmetric, and therefore
V ˚ is an extension of V . Furthermore, let ψ in D pV ˚q and consider φ P S

`

R3
˘

the space
of Schwartz functions. In particular φ P D pV q, and we get

|xψ, V φy| ď Cψ }φ}L2 .

As a consequence, using Riesz theorem, there exists an element ξ P L2
`

R3
˘

such that
xξ, φy “ xψ, V φy for any φ P S

`

R3
˘

. This in particular implies that V ψ “ ξ almost
everywhere, and therefore V ψ P L2

`

R3
˘

. By the definition of the domain of V we get
ψ P D pV q and V is self-adjoint.

Now, choosing ε ă 1 we can use (59) to first get that D pH0q Ď D pV q. We are then in
the hypothesis of the Kato-Rellich theorem, and we can conclude that H “ H0 ` V is
self-adjoint.

9.3 Exercise 3 - The square root is monotonous

Let H an Hilbert space and let A, B P B pHq, A˚ “ A, B˚ “ B

a Suppose6 A ě id; prove that A is invertible with A´1 P B pHq and that 0 ď A´1 ď id.

b Suppose 0 ď A ď B; prove that for any λ ą 0, A`λ id andB`λ id are invertible with
pA` λ idq´1 , pB ` λ idq´1

P B pHq and that we have pB ` λ idq´1
ď pA` λ idq´1.

c Suppose 0 ď A ď B; prove that
?
A ď

?
B.

Hint: Prove and use the fact that

?
x “

1

π

ż `8

0

1
?
λ

ˆ

1´
λ

x` λ

˙

dλ, @x ě 0. (61)

Proof. To prove a we first notice that A ě id implies that σ pAq Ď r1,`8q, and therefore
0 R σ pAq. By definition of spectrum this implies that A´1 P B pHq. Using functional
calculus, if µ is the spectral measure associated to A, for any ψ P H we get

xψ,A´1ψy “ xψ,

ż

σpAq

1

λ
dµ pλqψy ď sup

λPσpAq

1

λ
xψ,

ż

σpAq
dµ pλqψy ď }ψ}2 .

6Recall that A ě 0 if for any ψ P D pAq, xψ,Aψy ě 0 and that A ě B if A´B ě 0.
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Proceeding analogously we also get

xψ,A´1ψy “ xψ,

ż

σpAq

1

λ
dµ pλqψy ě inf

λPσpAq

1

λ
xψ,

ż

σpAq
dµ pλqψy ě 0.

Those chains of inequalities imply that 0 ď A´1 ď id.

To prove b consider λ ą 0; given that λ ą 0, we have

B ` λ id ě A` λ id ñ pA` λ idq´
1
2 pB ` λ idq pA` λ idq´

1
2 ě id,

where we used the fact that A` λ id ě λ id and that p¨q´
1
2 is continuous and bounded on

rλ,`8q to define pA` λ idq´
1
2 .

Using a we then get that

id ě
”

pA` λ idq´
1
2 pB ` λ idq pA` λ idq´

1
2

ı´1

“ pA` λ idq
1
2 pB ` λ idq´1

pA` λ idq
1
2 .

Multiplying both sides from left and right by pA` λ idq´
1
2 we can conclude.

To prove c, we first prove (61); we get
ż `8

0

1
?
λ

ˆ

1´
λ

x` λ

˙

dλ “

ż `8

0

x
?
λ px` λq

dλ “
?
x

ż `8

0

1
?
λ p1` λq

dλ

“
?
x
”

2 arctan
?
λ
ı`8

0
“ π

?
x.

As a consequence we can write for any ψ P H

xψ,
?
Aψy “ xψ,

ż

σpAq

?
λdµ pλqψy “ xψ,

ż

σpAq

1

π

ż `8

0

1
?
t

ˆ

1´
t

t` λ

˙

dtdµ pλqψy.

Now, given that 1?
t

´

1´ t
t`λ

¯

ď 1?
t

´

1´ t
t`}A}

¯

“
}A}

?
tpt`}A}q

is integrable in σ pAq ˆ

r0,`8q with the measure given by the product of the spectral measure of A and the
Lebesgue measure, we can exchange the order of the two integrals to get

xψ,
?
Aψy “ xψ,

1

π

ż `8

0

ż

σpAq

1
?
t

ˆ

1´
t

t` λ

˙

dµ pλq dtψy

“ xψ,
1

π

ż `8

0

1
?
t

´

1´ t pA` t idq´1
¯

dtψy.

Using now b we get that for any ψ P H

xψ,
?
Aψy “ xψ,

1

π

ż `8

0

1
?
t

´

1´ t pA` t idq´1
¯

dtψy

ď xψ,
1

π

ż `8

0

1
?
t

´

1´ t pB ` t idq´1
¯

dtψy “ xψ,
?
Bψy,

which allows us to conclude.
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9.4 Exercise 4 - Exercise on norm of the resolvent

Let H be an Hilbert space. Let A be a linear self-adjoint operator on H with A ě 0 and
λ ą 0. Denote with }¨} the operator norm and with }¨}H the norm induced by the inner
product in the Hilbert space H.

a Prove that
›

›

›
pA` λ idq´1

›

›

›
ď 1{λ.

b Prove that for all ψ P H,

}ψ}2H ě
›

›

›
A pA` λ idq´1 ψ

›

›

›

2

H
` λ2

›

›

›
pA` λ idq´1 ψ

›

›

›

2

H
. (62)

Conclude that
›

›

›
A pA` λ idq´1

›

›

›
ď 1.

Proof. To prove a recall that we proved in class that if T is a self-adjoint operator and f
is a continuous and bounded function we have }f pT q} ď supζPσpT q |f pζq|. Moreover, we
also saw that if A ě 0 then σ pAq Ď r0,`8q. As a consequence we get

›

›

›
pA` λ idq´1

›

›

›
ď sup

ζPσpAq

1

|ζ ` λ|
ď sup

ζPr0,`8q

1

ζ ` λ
ď

1

λ
.

To prove b we get that for any ψ P H

xψ, pA` λ idq´1A pA` λ idq´1 ψy “ xpA` λ idq´1 ψ,A pA` λ idq´1 ψy ě 0.

As a consequence we get that

›

›

›
A pA` λ idq´1 ψ

›

›

›

2

H
` λ2

›

›

›
pA` λ idq´1 ψ

›

›

›

2

H
“

“ xψ, pA` λ idq´1 `A2 ` λ2
˘

pA` λ idq´1 ψy

ď xψ, pA` λ idq´1 `A2 ` 2λA` λ2
˘

pA` λ idq´1 ψy “ }ψ}2H .

As a consequence we then get
›

›

›
A pA` λ idq´1 ψ

›

›

›

H
ď }ψ}H which allows us to conclude

that
›

›

›
A pA` λ idq´1

›

›

›
ď 1.
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10 Exercise Sheet 10

10.1 Exercise 1 - The generator of the translation is the momentum

Let H :“ L2 pRq and P :“ ´iBx the momentum operator defined on the domain D pP q :“
H1 pRq as Pψ pxq “ ´iBψ

Bx pxq. Consider for any λ P R the bounded operator Tλ defined
for any ψ P H as Tλψ pxq “ ψ px´ λq.

Prove that tTλuλPR is a strongly continuous one-parameter unitary group and that

Tλ “ eiλP “ eλBx . (63)

Proof. By definition it follows that if λ “ 0 then for any ψ P H we get T0ψ pxq “ ψ pxq
and therefore T0 “ id. On the other hand, let λ, µ P R; then for any ψ P H we get
TλTµψ pxq “ Tµψ px´ λq “ ψ px´ λ´ µq “ Tλ`µ pxq. Consider now λ P R, ψ, ϕ P H; to
prove that Tλ is a unitary operator we compute T ˚λ to get

xψ, T ˚λϕy “ xTλψ,ϕy “

ż

R
ψ px´ λqϕ pxq dx “

ż

R
ψ pxqϕ px` λq dx “ xψ, T´λϕy,

and as a consequence T ˚λ “ T´λ; therefore we get TλT
˚
λ “ TλT´λ “ T0 “ id, T ˚λTλ “

T´λTλ “ T0 “ id and for any λ P R, Tλ is unitary.

To prove that it is continuous, first consider ϕ P C8c pRq. Then we get that there exists
R ą 0 such that for any |λ| ď δ, suppϕY suppTλϕ Ď BR p0q. As a consequence

|ϕ pxq ´ Tλϕ pxq|
2
ď 4 }ϕ}2L8 χBRp0q pxq P L

1 pRq .

We can then apply the dominated convergence theorem to get (with rλ “ λ´ µ)

lim
λÑµ

}Tλϕ´ Tµϕ}
2
L2 “ lim

rλÑ0

›

›T
rλ
ϕ´ ϕ

›

›

2

L2 “ lim
rλÑ0

ż

R
|ϕ pxq ´ Tλϕ pxq|

2 dx

“

ż

R
lim
rλÑ0

|ϕ pxq ´ Tλϕ pxq|
2 dx “ 0.

Let now ε ą 0 and for any ψ P H let ϕ P C8c pRq such that }ψ ´ ϕ}2L2 ă ε. We then get

lim
λÑµ

}Tλψ ´ Tµψ}L2 ď lim
λÑµ

“

}Tλψ ´ Tλϕ}L2 ` }Tλϕ´ Tµϕ}L2 ` }Tµψ ´ Tµϕ}L2

‰

“ lim
λÑµ

“

2 }ψ ´ ϕ}L2 ` }Tλϕ´ Tµϕ}L2

‰

“ 2 }ψ ´ ϕ}L2 ă 2ε.

Sending ε to zero we get the conclusion.

Consider now A the infinitesimal generator of tTλuλPR. Suppose ψ P H; recall that if F
represent the Fourier transform, we get

FTλψ pkq “
1
?

2π

ż

R
e´ikxψ px´ λq dx “

1
?

2π

ż

R
e´ikpx`λqψ pxq dx “ e´iλk pψ pkq .
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Suppose now that ψ P H1 pRq; then we get for any λ

F
ˆ

Tλ ´ id

λ
ψ

˙

pkq “
e´iλk ´ 1

λ
pψ pkq .

Given that FPψ pkq “ k pψ pkq, we get

›

›

›

›

Tλ ´ id

λ
ψ ´ iPψ

›

›

›

›

2

2

“

›

›

›

›

e´iλk ´ 1

λ
pψ ´ ik pψ

›

›

›

›

2

2

“

ż

R

ˇ

ˇ

ˇ

ˇ

e´iλk ´ 1

λ
´ ik

ˇ

ˇ

ˇ

ˇ

2

|ψ pkq|2 dk

Given that
ˇ

ˇ

ˇ

e´iλk´1
λ

ˇ

ˇ

ˇ

2
ď |k|2, and |k|2

ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
P L1 pRq, we can conclude

lim
λÑ0

›

›

›

›

Tλ ´ id

λ
ψ ´ iPψ

›

›

›

›

2

2

“

ż

R
lim
λÑ0

ˇ

ˇ

ˇ

ˇ

e´iλk ´ 1

λ
´ ik

ˇ

ˇ

ˇ

ˇ

2

|ψ pkq|2 dk “ 0.

So clearly H1 pRq Ď D pAq and A is an extension of P . Now, given that as a consequence
we have that P ˚ is an extension of A˚ and that both A and P are self-adjoint, we get
that A “ P ; therefore by Stone theorem eλBx “ eiλP “ Tλ.

10.2 Exercise 2 - Condition for self-adjointness (complement to the class)

Let H be an Hilbert space, A a symmetric operator and µ ą 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.

b Ran pA` iµ idq “ Ran pA´ iµ idq “ H.

Proof. In class we proved that if A is symmetric, A “ A˚ if and only if Ran pA˘ i idq “ H.

Now, A is symmetric if and only if 1
µA is, and given that A ` iµ id “ µ

´

1
µA` i id

¯

,

Ran pA` iµ idq “ Ran
´

1
µA` i id

¯

, the result follows from the result proven in class.

10.3 Exercise 3 - Unitary operators as exponentials

Let H be an Hilbert space. Let U P B pHq. Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U “ eiA.

Proof. Recall that from functional calculus for self-adjoint operators we have f pAq˚ “
f pAq. Then, given that eix “ e´ix, we get

`

eiA
˘˚
“ e´iA. As a consequence we get

eiA
`

eiA
˘˚
“ eiAe´iA “ id “ e´iAeiA “

`

eiA
˘˚
eiA, and therefore U “ eiA is a unitary

operator.
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Suppose now U is unitary. Then we get σ pUq Ď B1 p0q because }U} “ 1. On the other
hand we get that if λ P B1 p0q, then U ´ λ id “ U pid´λU˚q “ pid´λU˚qU , and given
that }λU˚} “ |λ| ă 1 and U is unitary, then U´λ id is invertible and λ R σ pUq. Therefore
σ pUq Ď S1 (where S1 “ tψ P H| }ψ} “ 1u).

Now, the map xt is bounded from σ pUq Ñ C for any t P R. Define then U ptq :“ U t,
defined through the functional calculus for normal operators. By construction we have that
U ptq is a strongly continuous one-parameter unitary group, so let A be the self-adjoint
infinitesimal generator. As a consequence of Stone theorem, we get that U ptq “ eitA, and
therefore, U “ U p1q “ eiA.

10.4 Exercise 4 - Bogoliubov diagonalization - part I

Let H be an Hilbert space and A`, A´ P B pHq such that

“

A˘, A
˚
˘

‰

“ id, (64)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (65)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (66)

a Prove that H is self-adjoint.

b Prove that there exist operators C˘ and numbers α, β P R such that

“

C˘, C
˚
˘

‰

“ id, (67)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (68)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (69)

Hint: Define
C˘ :“ γ˘A˘ ` ξ˘A

˚
¯ (70)

for some γ˘, ξ˘ P R. Use (67) and (68) to deduce that γ` “ γ´, ξ` “ ξ´ and that
γ2
˘ ´ ξ

2
˘ “ 1. Calculate C˚˘C˘ and deduce (69).

Proof. To prove a, given that A˘ are bounded operators, first notice that
`

A˚˘A˘
˘˚
“

A˚˘A
˚˚
˘ “ A˚˘A˘. On the other hand

`

A˚`A
˚
´

˘˚
“ A˚˚´ A

˚˚
` “ A´A` “ A`A´, and

therefore
`

A˚`A
˚
´ `A`A´

˘˚
“ A˚`A

˚
´ `A`A´. As a consequence H is self-adjoint.

To prove b , consider C˘ defined as (70). Using (67) we get

id “
“

C˘, C
˚
˘

‰

“
“

γ˘A˘ ` ξ˘A
˚
¯, γ˘A

˚
˘ ` ξ˘A¯

‰

“ γ2
˘

“

A˘, A
˚
˘

‰

` ξ2
˘

“

A˚¯, A¯
‰

“
`

γ2
˘ ´ ξ

2
˘

˘

id .
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Now, given that the function sinh is bijective, let θ˘ P R such that ξ˘ “ sinh pθ˘q. Then
γ2
˘ “ 1` ξ2

˘ “ 1` sinh2 pθ˘q “ cosh pθ˘q. Using (68) we then get

0 “ rC`, C´s “
“

γ`A` ` ξ`A
˚
´, γ´A´ ` ξ´A

˚
`

‰

“ γ`ξ´
“

A`, A
˚
`

‰

` ξ`γ´
“

A˚´, A´
‰

“ pγ`ξ´ ´ ξ`γ´q id

“ pcosh pθ`q sinh pθ´q ´ cosh pθ´q sinh pθ`qq id “ sinh pθ´ ´ θ`q id .

From the fact that sinh´1 p0q “ 0, we get that θ` “ θ´ “ θ. We then got that C˘ “
cosh pθqA˘ ` sinh pθqA˚¯, and we now consider C˚˘C˘:

C˚˘C˘ “
`

cosh pθqA˘ ` sinh pθqA˚¯
˘˚ `

cosh pθqA˘ ` sinh pθqA˚¯
˘

“
`

cosh pθqA˚˘ ` sinh pθqA¯
˘ `

cosh pθqA˘ ` sinh pθqA˚¯
˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA¯A
˚
¯ ` sinh pθq cosh pθq

`

A˚`A
˚
´ `A`A´

˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA˚¯A¯ ` sinh2 pθq
“

A¯, A
˚
¯

‰

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA˚¯A¯

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq .

Using the fact that sinh p2θq “ 2 sinh pθq cosh pθq and cosh p2θq “ cosh2 pθq ` sinh2 p2θq,
as a consequence we get

C˚`C` ` C
˚
´C´ “ cosh2 pθqA˚`A` ` sinh2 pθqA˚´A´

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq

` cosh2 pθqA˚´A´ ` sinh2 pθqA˚`A`

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq

“ cosh p2θq
`

A˚`A` `A
˚
´A´

˘

` sinh p2θq
`

A˚`A
˚
´ `A`A´

˘

` 2 sinh2 pθq .

Now notice that
˜

η
a

η2 ´ ζ2

¸2

´

˜

ζ
a

η2 ´ ζ2

¸2

“ 1.

As a consequence, there is θ such that cosh p2θq “ η?
η2´ζ2

and sinh p2θq “ ζ?
η2´ζ2

, and

as a consequence

H “ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

“
a

η2 ´ ζ2
“

cosh p2θq
`

A˚`A` `A
˚
´A´

˘

` sinh p2θq
`

A˚`A
˚
´ `A`A´

˘‰

“
a

η2 ´ ζ2
“

C˚`C` ` C
˚
´C´ ´ 2 sinh2 pθq

‰

,

so α “
a

η2 ´ ζ2. Now, we have

´2
a

η2 ´ ζ2 sinh2 pθq “
a

η2 ´ ζ2 p1´ cosh p2θqq “
a

η2 ´ ζ2

˜

1´
η

a

η2 ´ ζ2

¸

“
a

η2 ´ ζ2 ´ η “ ´
ζ2

η `
a

η2 ` ζ2
.
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With α as above and β “
a

η2 ´ ζ2 ´ η we then get

H “
a

η2 ´ ζ2
`

C˚`C` ` C
˚
´C´

˘

´
ζ2

η `
a

η2 ` ζ2

“ α
`

C˚`C` ` C
˚
´C´

˘

` β
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11 Exercise Sheet 11

11.1 Exercise 1 - Double Harmonic oscillator

Let H “ L2
`

R2
˘

. Let rH be defined as

rH :“ ´
1

2
p∆x `∆yq `

1

2

`

x2 ` y2
˘

´ λxy (71)

with D
´

rH
¯

“ C8c
`

R2
˘

.

Prove that if λ P p´1, 1q then rH is essentially self adjoint and study the spectrum of the
closure of rH.

Hint: Prove that, with the right change of variables px, yq Ñ pw, zq, rH “ Hw `Hz with
Hw only depending on w and Hz only depending on z.

Proof. Consider the change of variables given as z :“ x ` y, w “ x ´ y. If we define
φ pz, wq :“ ψ

`

z`w
2 , z´w2

˘

we get that

∆xψ px, yq “ ∆x rφ px` y, x´ yqs “ Bx rpBzφq px` y, x´ yq ` pBwφq px` y, x´ yqs

“ p∆zφq px` y, x´ yq ` 2 pBzBwφq px` y, x´ yq ` p∆wφq px` y, x´ yq

and analogously

∆yψ px, yq “ p∆wφq px` y, x´ yq ´ 2 pBzBwφq px` y, x´ yq ` p∆wφq px` y, x´ yq .

Now, it is easy to check that

x2 ` y2 “
z2 ` w2

2

xy “
z2 ´ y2

4
.

As a consequence, we get that ψ P C8c
`

R2
˘

if and only if φ P C8c
`

R2
˘

and moreover

rHψ px, yq “

„

´p∆zφq `
1´ λ

4
z2



φ pz, wq `

„

´p∆wφq `
1` λ

4
w2



φ pz, wq .

If we denote now Hω :“ ´∆`ω2ξ2 as the harmonic oscillator in one dimension with vari-

able ξ, we know thatHω is self adjoint with domainDω :“
!

f P L2 pRq | ξ2f, k2
pf P L2 pRq

)

.

As a consequence, the operator defined as H?1´λ{2b id` idbH?1`λ{2 is self-adjoint with

domain7 D?1´λ{2 bD?1`λ{2. Given that this operator corresponds to the closure of rH,

we get that rH is essentially self-adjoint.

7Recall that given two vector subspaces V1, V2 of L2
pRq, we have that the space V1 b V2 is defined as

the closure in L2
`

R2, dxdy
˘

of all possible linear combinations of product of one element of V1 with one
element of V2, i.e.

V1 b V2 “

#

N
ÿ

j“1

v1j pxq v
2
j pyq | v

1
j P V1, v2j P V2, @j “ 1, . . . , N

+

.
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Now, in the exercise session we saw that

σ
´

H?1´λ{2 b id` idbH?1`λ{2

¯

“ σ
´

H?1´λ{2

¯

` σ
´

H?1`λ{2

¯

,

and in class we saw that8 σ pHωq “ ω ` 2ωN, therefore we can conclude that

σ
´

rHcl
¯

“

"
?

1` λ`
?

1´ λ

2
`
?

1` λn`
?

1´ λm| n,m P N
*

.

11.2 Exercise 2 - Normal matrices polynomials

Let A be a normal matrix (meaning that AA˚ “ A˚A) and p a polynomial in two variables.
Show by example that an eigenvector for p pA,A˚q is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p pA,A˚q do not correspond to eigenvectors of A, the
spectrum does, in the sense that

σ pp pA,A˚qq “ tp pλ, λ˚q | λ P σ pAqu . (72)

Proof. Consider the matrix A defined as

A :“

ˆ

0 1` i
´1´ i 0

˙

.

We can compute explicitly the adjoint matrix A˚ and we get

A˚ “

ˆ

0 ´1` i
1´ i 0

˙

“ iA.

As a consequence we get rA,A˚s “ i rA,As “ 0 and A is therefore normal. Let now
p px, yq “ xy. We get that p pA,A˚q “ iA2. Now, another explicit computation gives us
that

p pA,A˚q “ iA2 “ i

ˆ

´2i 0
0 ´2i

˙

“

ˆ

2 0
0 2

˙

“ 2 id .

Now, given that p pA,A˚q “ 2 id, both e1 :“ p1, 0qT and e2 :“ p0.1qT are eigenvector,
but Ae1 “ ´p1` iq e2 and Ae2 “ p1` iq e1, which shows that this is in fact a counter
example.

8Recall that 0 P N.
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11.3 Exercise 3 - Spectral measure of the laplacian

Let I :“ r0, 1s and consider H “ L2 pIq. Define the operator H :“ ´∆ with domain9

D pHq :“ H2 pIq X C1
per pIq. Prove that H is self-adjoint and exhibit its spectral measure

explicitly.

Proof. Given that H is symmetric, we get that D pHq Ď D pH˚q. Let now ψ P D pH˚q.
Recall that if

Fψ pkq “ pf pkq “

ż

I
e´2πikxf pxq dx

is the Fourier series associated to ψ. We then have that

F pBxψq pkq “ 2πik pψ pkq

F p∆xψq pkq , “ ´p2πkq
2
pψ pkq .

Also, we mentioned before the fact that the Fourier series acts as a unitary operator.
Consider now the state ψΛ defined as

ψΛ pxq “
Λ
ÿ

k“´Λ

p2πkq2 pψ pkq e2πikx.

Clearly pψΛ P D pHq. From the definition of Fourier transform we get that pψΛ pkq “
p2πkq2 pψ pkq for any |k| ď Λ and pψΛ pkq “ 0 otherwise. Moreover we have

}ψΛ}
2
L2pIq “

Λ
ÿ

k“´Λ

p2πkq4
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
.

Now, we know that |xHψΛ, ψy| ď C }ψΛ}L2pIq, therefore

C }ψΛ}L2pIq ě |xHψΛ, ψy| “

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
ÿ

k“´Λ

p2πkq2 pψΛ pkq pψ pkq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
ÿ

k“´Λ

p2πkq4
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

“ }ψΛ}L2pIq .

This implies that supΛPN }ψΛ}L2pIq ď C, and therefore ψ P H2 pIq. Now, consider ϕ P
D pHq. Integrating by part we get

xϕ,H˚ψy “ xHϕ,ψy “

ż

I
´B2

xϕ pxqψ pxq dx

“ ´Bxϕ p1q rψ p1q ´ ψ p0qs `

ż

I
Bxϕ pxqBxψ pxq dx

“ ´Bxϕ p1q rψ p1q ´ ψ p0qs ` ϕ p1q rBxψ p1q ´ Bxψ p0qs

`

ż

I
ϕ pxq

`

´B2
xψ pxq

˘

dx.

9This definition makes sense, because we know that for any function ψ P H2
pIq we have that there is

a function rψ P C1
pIq that coincides almost everywhere with ψ. The definition of the domain is then the

set of functions ψ P H2
pIq such that the function rψ is periodic with derivative which is periodic.
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Considering functions such that ϕp0q “ Bxϕ p0q “ 0, we get that H˚ψ pxq “ ´B2
xψ pxq. As

a consequence we get that for any function ψ P D pHq

´Bxϕ p1q rψ p1q ´ ψ p0qs ` ϕ p1q rBxψ p1q ´ Bxψ p0qs “ 0.

as a consequence, ψ p1q “ ψ p0q and Bxψ p1q “ Bxψ p0q and ψ P D pHq and therefore H is
self-adjoint.

We now get that for any ϕ P H and ψ P D pHq

xϕ,Hψy “
ÿ

kPN
p2πkq2 pϕ pkq pψ pkq “ xϕ,

ÿ

kPN
p2πkq2 pψ pkq e2πikxy “ xϕ,

ÿ

kPN
p2πkq2 Pkψy,

where Pk is the projector along the function e2πikx. Therefore, given thatH “
ř

kPN p2πkq
2 Pk,

the spectrum of H is given by σ pHq “
 

4π2k2| k P N
(

.

We can then write H as

H “
ÿ

λPσpHq

λ

„

P?λ
2π

` P
´
?
λ

2π



,

and therefore the projection-valued measure associated to H is given by

µ pEq “
ÿ

λPE

λ

„

P?λ
2π

` P
´
?
λ

2π



,

for any E measurable subset of σ pHq.

11.4 Exercise 4 - Bogoliubov diagonalization - part II

Let H be an Hilbert space and A`, A´ P B pHq such that

“

A˘, A
˚
˘

‰

“ id, (73)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (74)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (75)

Recall that if θ “ 1
2 arctanh

´

ζ
η

¯

, α “
a

η2 ´ ζ2, β “
a

η2 ´ ζ2 ´ η and C` and C´ are

defined as
C˘ :“ cosh pθqA˘ ` sinh pθqA˚¯ (76)

we get

“

C˘, C
˚
˘

‰

“ id, (77)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (78)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (79)
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a Consider X :“ A˚`A
˚
´ ´ A`A´. Prove that X is skew-adjoint, meaning that X˚ “

´X.

b For any t P R consider U ptq :“ e´tX . Prove that tU ptqutPR is a strongly continuous
one-parameter unitary group such that

U ptqA˘U p´tq “ cosh ptqA˘ ` sinh ptqA˚¯. (80)

Hint: Consider for any ψ,ϕ P H the function f : RÑ R defined as

f˘ ptq :“ xψ,U ptqA˘U p´tqϕy. (81)

Prove that f satisfies a closed second order differential equation and deduce (80).

c Suppose that there is a complete orthonormal system tϕnunPN for H such that
A˚˘A˘ϕn “ ε˘nϕn, with ε˘n P R. Prove that there exist a complete orthonormal
system tψnunPN for H such that

Hψn “
“

α
`

ε`n ` ε
´
n

˘

` β
‰

ψn. (82)

Proof. To prove a is enough to notice that, given that A˘ are bounded and that A˚˚˘ “ A˘,
then X˚ “

`

A˚`A
˚
´ ´A`A´

˘˚
“ A´A` ´A

˚
´A

˚
` “ ´X.

To prove b, define Y :“ iX; then the operator Y is is firstly bounded because X is,
and moreover is now self adjoint, indeed Y ˚ “ piXq˚ “ ´iX˚ “ iX “ Y . We can
then construct via functional calculus the operator U ptq :“ eitY ” e´tX as a strongly
continuous one-parameter unitary group. For any ψ P H we then have, by the Stone
theorem, that

lim
hÑ0

U pt` hq ´ U ptq

h
ψ “ iY U ptqψ “ ´XU ptqψ.

Now, consider ψ,ϕ P H. Define then f˘ ptq as in (81), we then get that, given that U ptq
is a strongly continuous one-parameter unitary group, f is a differentiable function and
its derivative satisfies

f 1˘ ptq “ BtxU p´tqψ,A˘U p´tqϕy

“ xXU p´tqψ,A˘U p´tqϕy ` xU p´tqψ,A˘XU p´tqϕy

“ ´xψ,U ptqXA˘U p´tqϕy ` xψ,U ptqA˘XU p´tqϕy

“ ´xψ,U ptq rX,A˘sU p´tqϕy.

Consider now rX,A`s; we get

rX,A`s “
“

A˚`A
˚
´ ´A`A´, A`

‰

“
“

A˚`A
˚
´, A`

‰

“
“

A˚`, A`
‰

A˚´ “ ´A
˚
´,

and similarly we get

rX,A´s “ ´A`
“

X,A˚`
‰

“ ´
“

X˚, A˚`
‰

“ rX,A`s
˚
“ ´A˚˚´ “ ´A´

“

X,A˚´
‰

“ ´
“

X˚, A˚´
‰

“ rX,A´s
˚
“ ´A˚˚` “ ´A`.
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From the fact that rX,A˘s is bounded we also have that f 1˘ is again differentiable and
we get

f2˘ ptq “ BtxU p´tqψ,A
˚
¯U p´tqϕy “ ´xψ,U ptq

“

X,A˚¯
‰

U p´tqϕy

“ ´xψ,U ptq p´A˘qU p´tqϕy “ f ptq .

As a consequence we get that f solves the following second order ordinary differential
equation

$

&

%

f2˘ “ f˘,
f˘ p0q “ xψ,A˘ϕy,
f 1˘ p0q “ xψ,A

˚
¯ϕy.

From the fact that f2˘ “ f˘, we get f˘ ptq “ f˘ p0q cosh ptq ` f 1˘ p0q sinh ptq. As a conse-
quence we get that for any ψ, ϕ P H

xψ,U ptqA˘U p´tqϕy “ f˘ ptq “ f˘ p0q cosh ptq ` f 1˘ p0q sinh ptq

“ xψ,A˘ϕy cosh ptq ` xψ,A˚¯ϕy sinh ptq

“ xψ,
“

cosh ptqA˘ ` sinh ptqA˚¯
‰

ϕy,

and therefore we obtain (80).

To prove c, consider the pair of operators C˘ defined as in 76. From point b if we define
U :“ U pθq we get that

UA˘U
˚ “ cosh pθqA˘ ` sinh pθqA˚¯ “ C˘

UA˚˘U
˚ “ pUA˘U

˚q
˚
“ C˚˘.

Using we can then rewrite the Hamiltonian as

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β “ U
“

α
`

A˚`A` `A
˚
´A´

˘

` β
‰

U˚.

Define now ψn :“ Uϕn; then on the one hand we have xψn, ψmy “ xUϕn, Uϕmy “
xϕn, U

˚Uϕmy “ xϕn, ϕmy “ δn,m so tψnunPN is an orthonormal system. Given that
tϕnunPN is also complete and U is bijective, we get that also tψnunPN is a complete
orthonormal system. Now we then get

Hψn “ U
“

α
`

A˚`A` `A
˚
´A´

˘

` β
‰

U˚ pUϕnq “ U
“

α
`

A˚`A` `A
˚
´A´

˘

ϕn
‰

` βψn

“ U
“

α
`

ε`n ` ε
´
n

˘

ϕn
‰

` βψn “
“

α
`

ε`n ` ε
´
n

˘

` β
‰

ψn,

which concludes the proof.
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